-
摘要: 為了改善M2高速鋼中的碳化物分布,通過數值模擬詳細分析了結晶器旋轉對M2高速鋼電渣重熔過程溫度場、金屬熔池形狀的影響,并進一步通過實驗室雙極串聯結晶器旋轉電渣爐研究了旋轉速率對M2高速鋼電渣重熔過程的影響。采用掃描電鏡觀察并分析了結晶器旋轉對電渣錠中碳化物形貌、分布的影響;采用小樣電解萃取實驗,分析了結晶器旋轉速率對碳化物組成的影響。結果發現,隨著結晶器旋轉速率的增加,渣池的高溫區從芯部向邊部遷移,溫度分布更加均勻;金屬熔池的深度變淺,兩相區的寬度收窄,從而導致局部凝固時間降低、二次枝晶間距減小。與此相對應,隨著結晶器旋轉速率的增加,M2電渣錠的渣皮更薄、更加均勻,結晶器對電渣錠的冷卻強度更大,碳化物網格開始破碎、變薄,碳化物由片狀改變為細小的棒狀。X射線衍射分析表明,不論結晶器是否旋轉,碳化物的類型始終不變,由M2C、MC和M6C組成,但是隨旋轉速率增加M2C含量增加,MC和M6C含量降低。碳化物組織得以改善的主要原因在于,結晶器旋轉導致金屬熔池深度降低、兩相區寬度收窄,改善了凝固條件,減輕了元素偏析。Abstract: High-speed steel contains a large amount of carbides, the shape and distribution of which have an important influence on its quality. To improve the distribution of carbides in M2 high-speed steel, the temperature field and the shape of the metal pool during the mold-rotation process were investigated in detail using a numerical simulation. Moreover, the effect of the mold-rotation speed on the electroslag remelting process was investigated using a rotating bifilar electroslag remelting furnace under laboratory conditions. The morphology and distribution of carbides in an ESR ingot were observed using an SEM, and the composition of carbides was analyzed through an electrolytic extraction experiment. Results show that with increase in mold rotation speed, the high-temperature zone of the slag pool moves from the core to the edge. Moreover, the temperature distribution becomes uniform. The depth of the metal pool becomes shallow, and the thickness of the two-phase region decreases, which results in a short local solidification time and small secondary dendrite spacing. Correspondingly, with the increase in the mold rotation speed, the slag skin of ESR ingot becomes thin and more uniform than earlier. The cooling intensity of the mold on the ESR ingot is high, and the carbide network begins to break and become thin. The morphology of carbides changes from flake to fine rod. XRD analysis determines whether the mold rotates or not, carbides always comprise M2C, MC, and M6C. However, the content of M2C increases and the contents of MC and M6C decrease with the increase in mold-rotation speed. The main reason for the improvement in the carbide structure is that the mold rotation decreases the metal pool depth and two-phase zone thickness, which improves the solidification conditions and reduces the element segregation.
-
Key words:
- electroslag remelting /
- high speed steel /
- carbide /
- mold /
- numerical simulation
-
表 1 計算所需相關參數
Table 1. Relevant parameters required for calculation
Parameters Value Thickness of slag pool/mm 40 Electrode diameter/mm 28 Electrode gap/mm 20 Electrode insertion depth/mm 15 Mold diameter/mm 96 Voltage/V 34 Mold-rotation speed / (r·min?1) 0, 6, 13, 19 259luxu-164 -
參考文獻
[1] Luan Y K, Song N N, Bai Y L, et al. Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls. J Mater Process Technol, 2010, 210(3): 536 doi: 10.1016/j.jmatprotec.2009.10.017 [2] Ji Y L, Zhang W, Chen X Y, et al. Increasing solidification rate of M2 high-speed steel ingot by fusible metal mold. Acta Metall Sin (English Lett) , 2016, 29(4): 382 doi: 10.1007/s40195-016-0398-x [3] Li Z B. Electroslag Metallurgy Theory and Practice. Beijing: Metallurgical Industry Press, 2010李正邦. 電渣冶金的理論與實踐. 北京: 冶金工業出版社, 2010 [4] He B, Li J, Shi C B, et al. Effect of cooling intensity on carbides in Mg-containing H13 steel during the electroslag remelting process. Chin J Eng, 2016, 38(12): 1720賀寶, 李晶, 史成斌, 等. 電渣重熔過程冷卻強度對含鎂H13鋼中碳化物的影響. 工程科學學報, 2016, 38(12):1720 [5] Hellman P. High-speed steels by powder metallurgy. Scand J Metall, 1998, 27(1): 44 [6] Zhong H L, Fang Y, Kuang C, et al. Development of powder metallurgy high speed steel. Maters Sci Forum, 2010, 638-642: 1854 doi: 10.4028/www.scientific.net/MSF.638-642.1854 [7] Li J, Li J, Shi C B, et al. Effect of trace magnesium on carbide improvement in H13 steel. Can Metall Q, 2016, 55(3): 321 doi: 10.1179/1879139515Y.0000000030 [8] Zhou X F, Fang F, Tu Y Y, et al. Carbide refinement in M42 high speed steel by rare earth metals and spheroidizing treatment. J Southeast Univ English Ed, 2014, 30(4): 445 [9] Wang M J, Chen L, Wang Z X, et al. Influence of rare earth elements on solidification behavior of a high speed steel for roll using differential scanning calorimetry. J Rare Earths, 2011, 29(11): 1089 doi: 10.1016/S1002-0721(10)60604-7 [10] Chang L Z, Shi X F, Cong J Q, et al. Effects of relative motion between consumable electrodes and mould on solidification structure of electroslag ingots during electroslag remelting process. Ironmaking Steelmaking, 2014, 41(8): 611 doi: 10.1179/1743281213Y.0000000177 [11] Chang L Z, Shi X F, Wang R X, et al. Effect of mold rotation on inclusion distribution in bearing steel during electroslag remelting process. China Foundry, 2014, 11(5): 452 [12] Ge B L. Numerical Simulation of Slag Composition Change Influence on ESR Process[Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2016葛蓓蕾. 電渣重熔過程中渣成分變化對電渣冶金過程影響的數值模擬[學位論文]. 西安: 西安建筑科技大學, 2016 [13] Li B K, Wang Q. Theory and Technology of Electroslag Remelting Based on Numerical Simulation. Beijing: Science Press, 2016李寶寬, 王強. 基于數值模擬的電渣重熔理論與技術. 北京: 科學出版社, 2016 [14] Wang F, Li B K. Electromagnetic field and Joule heating of an electroslag remelting process with two series-connected electrodes. J Northeast Univ Nat Sci, 2011, 32(4): 533王芳, 李寶寬. 雙級串聯電渣重熔系統電磁場和焦耳熱場研究. 東北大學學報(自然科學版), 2011, 32(4):533 [15] Zhou X F, Liu D, Zhu W L, et al. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel. J Iron Steel Res Int, 2017, 24(1): 43 doi: 10.1016/S1006-706X(17)30007-9 [16] Zhou X F, Fang F, Jiang J Q, et al. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment. Mater Sci Technol, 2014, 30(1): 116 doi: 10.1179/1743284713Y.0000000338 [17] Feng W W. The Carbide Characteristics of M2 High Speed Steel Containing Nitrogen and Rare Earth[Dissertation]. Qinhuangdao: Yanshan University, 2013馮唯偉. 含氮與稀土M2高速鋼碳化物特性研究[學位論文]. 秦皇島: 燕山大學, 2013 [18] Chang L Z, Li Z B. Method of controlling solidification quality in electroslag remelting process. Steelmaking, 2007, 23(4): 56 doi: 10.3969/j.issn.1002-1043.2007.04.015常立忠, 李正邦. 電渣重熔過程中金屬凝固的控制方法. 煉鋼, 2007, 23(4):56 doi: 10.3969/j.issn.1002-1043.2007.04.015 [19] Flemings M C. Solidification processing. Translated by Guan Y L, Tu B H, Xu C X. Beijing: Metallurgical Industry Press, 1981弗萊明斯 M C. 凝固過程. 關玉龍, 屠寶洪, 許誠信, 譯. 北京: 冶金工業出版社, 1981 [20] Wang Q M, Cheng G G, Huang Y. Morphology and precipitation mechanism of large carbides in M2 high speed steel. Iron Steel, 2018, 53(1): 65王啟明, 成國光, 黃宇. M2高速鋼大尺寸碳化物的形貌特征及析出機理. 鋼鐵, 2018, 53(1):65 [21] Deng Y R, Chen J R, Wang S Z. High Speed Tool Steel. Beijing: Metallurgical Industry Press, 2002鄧玉昆, 陳景榕, 王世章. 高速工具鋼. 北京: 冶金工業出版社, 2002 -