<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

等效循環電池組剩余使用壽命預測

李練兵 季亮 祝亞尊 王志江 嵇雷

李練兵, 季亮, 祝亞尊, 王志江, 嵇雷. 等效循環電池組剩余使用壽命預測[J]. 工程科學學報, 2020, 42(6): 796-802. doi: 10.13374/j.issn2095-9389.2019.07.03.003
引用本文: 李練兵, 季亮, 祝亞尊, 王志江, 嵇雷. 等效循環電池組剩余使用壽命預測[J]. 工程科學學報, 2020, 42(6): 796-802. doi: 10.13374/j.issn2095-9389.2019.07.03.003
LI Lian-bing, JI Liang, ZHU Ya-zun, WANG Zhi-jiang, JI Lei. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack[J]. Chinese Journal of Engineering, 2020, 42(6): 796-802. doi: 10.13374/j.issn2095-9389.2019.07.03.003
Citation: LI Lian-bing, JI Liang, ZHU Ya-zun, WANG Zhi-jiang, JI Lei. Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack[J]. Chinese Journal of Engineering, 2020, 42(6): 796-802. doi: 10.13374/j.issn2095-9389.2019.07.03.003

等效循環電池組剩余使用壽命預測

doi: 10.13374/j.issn2095-9389.2019.07.03.003
基金項目: 河北省重點研發計劃資助項目(20312102D,20314301D)
詳細信息
    通訊作者:

    E-mail: 1561013191@qq.com

  • 中圖分類號: TM911.3

Investigation of RUL prediction of lithium-ion battery equivalent cycle battery pack

More Information
  • 摘要: 電動汽車以零污染、零排放等優點成為新能源汽車中最具有發展潛力的對象,鋰離子電池作為其動力來源,科學準確地預測其剩余使用壽命是決定電動汽車性能的重要因素。本文研究等效循環電池組在等效循環工況、不同循環次數時,鋰離子電池電壓隨著放電時間的變化曲線。通過分析不同循環次數下導函數在等效特征點處的斜率變化規律,建立鋰離子電池等效循環工況下的壽命退化曲線。選取NASA等效循環電池組和自測JZ等效循環電池組,將放電初期和放電后期曲線與特定斜率直線交點作為等效循環壽命預測的等效特征點,根據這兩組特征點分別建立退化模型Mini和Mlat。最后選取等效循環電池組內的其他電池進行鋰離子電池等效循環壽命預測的驗證。通過鋰離子電池測試數據集驗證其預測精度較高,穩定性較好,具有較強的應用價值。

     

  • 圖  1  B6電池等壓降放電時間?電壓曲線圖

    Figure  1.  Curves of discharge time and voltage of B6 battery with constant voltage drop

    圖  2  B6電池數據處理后等壓降放電時間?電壓曲線圖

    Figure  2.  Curves of discharge time and voltage of B6 battery with constant voltage drop based on data processing

    圖  3  B6電池濾波后時間導函數曲線圖

    Figure  3.  Time derivative curves of B6 battery after filtering

    圖  4  使用B6放電數據建立退化曲線。(a)放電前期數據;(b)放電后期數據

    Figure  4.  Degradation curves using the B6 discharge data: (a) pre-discharge data; (b) after discharge

    圖  5  驗證B6電池濾波后時間一階導函數曲線圖

    Figure  5.  Validation of the derivative function curves after B6 battery filtering

    表  1  驗證退化模型Mini和Mlat壽命預測表(B6)

    Table  1.   Verification of life predictions with degradation models Mini and Mlat(B6)

    Model numberNvereNpreΔNδ/%Model numberNvereNpreΔNδ/%
    Mini400.8164442.85Mlat400.4654110.71
    850.7909275.00850.440612417.10
    1150.782108?7?5.001150.405952014.30
    下載: 導出CSV

    表  2  驗證退化模型Mini和Mlat壽命預測表(B5)

    Table  2.   Verification of the life predictions with degradation models Mini and Mlat(B5)

    Model numberNvereNpreΔNδ/%Model numberNvereNpreΔNδ/%
    Mini400.8154553.33Mlat400.45254996.00
    650.7987385.33650.411188238.00
    950.78510274.67950.3966105106.67
    下載: 導出CSV

    表  3  驗證退化模型Mini和Mlat壽命預測表(B7)

    Table  3.   Verification of the life predictions with degradation models Mini and Mlat(B7)

    Model numberNvereNpreΔNδ/%Model numberNvereNpreΔNδ/%
    Mini210.8253095.81Mlat210.445563522.60
    600.79973138.38600.43386663.87
    1010.780111106.451010.41585?16?10.32
    1410.770130?11?7.091410.36214653.22
    下載: 導出CSV

    表  4  驗證退化模型Mini和Mlat壽命預測表(JZ-1)

    Table  4.   Verification of the life predictions with degradation models Mini and Mlat(JZ-1)

    Model numberNvereNpreΔNδ/%Model numberNvereNpreΔNδ/%
    Mini800.85570?10?2.86Mlat800.31561?19?5.43
    1900.81019441.141900.285202123.43
    2500.790267174.862500.280236144.00
    下載: 導出CSV

    表  5  驗證退化模型Mini和Mlat壽命預測表(JZ-2,JZ-3)

    Table  5.   Verification of the life predictions with degradation models Mini and Mlat(JZ-2,JZ-3)

    Model numberBattery modelNvereNpreΔNδ/%Model numberBattery modelNvereNpreΔNδ/%
    MiniJZ-2750.8508161.71MlatJZ-2750.32045?30?8.57
    1500.820161113.141500.31080?70?20.00
    3000.785286?14?4.003000.290175?125?35.7
    JZ-3750.85668?72.00JZ-3750.33018?57?11.4
    1500.821149?1?0.281500.32045?105?21.00
    3000.775328288.003000.280236?64?12.80
    3800.780307?73?20.803800.285204?176?35.20
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Liu D T, Xie W, Liao H T, et al. An integrated probabilistic approach to lithium-ion battery remaining useful life estimation. IEEE Trans Instrum Meas, 2015, 64(3): 660 doi: 10.1109/TIM.2014.2348613
    [2] Gu R, Malysz P, Yang H, et al. On the suitability of electrochemical-based modeling for lithium-ion batteries. IEEE Trans Transp Electrific, 2016, 2(4): 417 doi: 10.1109/TTE.2016.2571778
    [3] Yang F, Qiao Y L, Gan D G, et, al. Lithium-ion battery polarization characteristics at different charging modes. Trans China Electrotech Soc, 2017, 32(12): 171

    楊帆, 喬艷龍, 甘德剛, 等. 不同充電模式對鋰離子電池極化特性影響. 電工技術學報, 2017, 32(12):171
    [4] Sun B X, Jiang J C, Han Z Q, e t, a l. The lithium-ion battery low temperature stress based on different degradation paths. Trans China Electrotech Soc, 2016, 31(10): 159 doi: 10.3969/j.issn.1000-6753.2016.10.019

    孫丙香, 姜久春, 韓智強, 等. 基于不同衰退路徑下的鋰離子動力電池低溫應力差異性. 電工技術學報, 2016, 31(10):159 doi: 10.3969/j.issn.1000-6753.2016.10.019
    [5] Yan W Z, Zhang B, Zhao G Q, et al. A battery management system with a Lebesgue-sampling-based extended Kalman filter. IEEE Trans Ind Electron, 2019, 66(4): 3227 doi: 10.1109/TIE.2018.2842782
    [6] Wei J W, Dong G Z, Chen Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression. IEEE Trans Ind Electron, 2018, 65(7): 5634 doi: 10.1109/TIE.2017.2782224
    [7] Guha A, Patra A. State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models. IEEE Trans Transp Electrific, 2018, 4(1): 135 doi: 10.1109/TTE.2017.2776558
    [8] Li D Z, Wang W, Ismail F. A mutated particle filter technique for system state estimation and battery life prediction. IEEE Trans Instrum Meas, 2014, 63(8): 2034 doi: 10.1109/TIM.2014.2303534
    [9] Jiao D S, Wang H Y, Zhu J, et al. EV battery SOH diagnosis method based on discrete Fréchet distance. Power Syst Prot Control, 2016, 44(12): 68 doi: 10.7667/PSPC151245

    焦東升, 王海云, 朱潔, 等. 基于離散Fréchet距離的電動汽車電池健康狀態診斷方法. 電力系統保護與控制, 2016, 44(12):68 doi: 10.7667/PSPC151245
    [10] Shen P, Ouyang M G, Lu L G, et al. The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles. IEEE Trans Veh Technol, 2018, 67(1): 92 doi: 10.1109/TVT.2017.2751613
    [11] Yang F F, Wang D, Xing Y J, et al. Prognostics of Li (NiMnCo) O2-based lithium-ion batteries using a novel battery degradation model. Microelectron Reliab, 2017, 70: 70 doi: 10.1016/j.microrel.2017.02.002
    [12] Feng J, Kvam P, Tang Y Z. Remaining useful lifetime prediction based on the damage-marker bivariate degradation model: a case study on lithium-ion batteries used in electric vehicles. Eng Fail Anal, 2016, 70: 323 doi: 10.1016/j.engfailanal.2016.04.014
    [13] Sahinoglu G O, Pajovic M, Sahinoglu Z, et al. Battery state-of-charge estimation based on regular/recurrent Gaussian process regression. IEEE Trans Ind Electron, 2018, 65(5): 4311 doi: 10.1109/TIE.2017.2764869
    [14] Andre D, Nuhic A, Soczka-Guth T, et al. Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles. Eng Appl Artif Intell, 2013, 26(3): 951 doi: 10.1016/j.engappai.2012.09.013
    [15] Hussein A A. Capacity fade estimation in electric vehicle Li-ion batteries using artificial neural networks. IEEE Trans Ind Appl, 2015, 51(3): 2321 doi: 10.1109/TIA.2014.2365152
    [16] Peng X, Zhang C, Yu Y, et al. Battery remaining useful life prediction algorithm based on support vector regression and unscented particle filter // 2016 IEEE International Conference on Prognostics and Health Management (ICPHM). Ottawa, 2016: 1
    [17] Wu J, Zhang C B, Chen Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl Energy, 2016, 173: 134 doi: 10.1016/j.apenergy.2016.04.057
    [18] Li H, Pan D H, Chen C L P. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine. IEEE Trans Syst Man Cybern Syst, 2014, 44(7): 851 doi: 10.1109/TSMC.2013.2296276
    [19] Zhou Y P, Huang M H, Chen Y P, et al. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction. J Power Sources, 2016, 321: 1 doi: 10.1016/j.jpowsour.2016.04.119
    [20] Liu J Z, Yang P, Li L B. A method to estimate the capacity of the lithium-ion battery based on energy model. Trans China Electrotech Soc, 2015, 30(13): 100 doi: 10.3969/j.issn.1000-6753.2015.13.014

    劉金枝, 楊鵬, 李練兵. 一種基于能量建模的鋰離子電池電量估算方法. 電工技術學報, 2015, 30(13):100 doi: 10.3969/j.issn.1000-6753.2015.13.014
    [21] Liu X B, Li Y, Wang N T, et al. A novel model-driven method for lithium-ion battery remaining useful life prediction // 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). Yangzhou, 2017: 446
  • 加載中
圖(5) / 表(5)
計量
  • 文章訪問數:  1806
  • HTML全文瀏覽量:  1320
  • PDF下載量:  98
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-03
  • 刊出日期:  2020-06-01

目錄

    /

    返回文章
    返回