<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種改進的非剛性圖像配準算法

何凱 魏穎 王陽 黃婉蓉

何凱, 魏穎, 王陽, 黃婉蓉. 一種改進的非剛性圖像配準算法[J]. 工程科學學報, 2019, 41(7): 955-960. doi: 10.13374/j.issn2095-9389.2019.07.015
引用本文: 何凱, 魏穎, 王陽, 黃婉蓉. 一種改進的非剛性圖像配準算法[J]. 工程科學學報, 2019, 41(7): 955-960. doi: 10.13374/j.issn2095-9389.2019.07.015
HE Kai, WEI Ying, WANG Yang, HUANG Wan-rong. An improved non-rigid image registration approach[J]. Chinese Journal of Engineering, 2019, 41(7): 955-960. doi: 10.13374/j.issn2095-9389.2019.07.015
Citation: HE Kai, WEI Ying, WANG Yang, HUANG Wan-rong. An improved non-rigid image registration approach[J]. Chinese Journal of Engineering, 2019, 41(7): 955-960. doi: 10.13374/j.issn2095-9389.2019.07.015

一種改進的非剛性圖像配準算法

doi: 10.13374/j.issn2095-9389.2019.07.015
基金項目: 

國家自然科學基金資助項目 61271326

詳細信息
    通訊作者:

    何凱, E-mail: hekai@tju.edu.cn

  • 中圖分類號: TP391.41

An improved non-rigid image registration approach

More Information
  • 摘要: 非剛性圖像配準一直是計算機視覺領域的研究重點. 為解決上述問題, 提出一種改進的光流場模型算法, 以提高光流估計的準確度. 算法首先對原始變分光流模型進行了改進, 提出利用新的各向異性正則項來代替原來的同向擴散函數, 以避免圖像模糊, 保留圖像的邊緣特征與細節特征; 此外, 通過引入包含鄰域信息的非局部平滑項來去除光流噪點, 同時增加了一個結合圖像結構與光流運動信息的權函數, 以減少過平滑所造成的細節丟失, 提高算法的魯棒性. 最后, 利用交替最小化與金字塔分層迭代策略相結合的方法求解位移場, 實現非剛性圖像的自動配準. 仿真實驗結果表明, 與傳統方法相比, 本文算法對不同類型的非剛性圖像均具有較高的魯棒性, 取得了理想的圖像配準效果.

     

  • 圖  1  采用各向同性與各向異性正則項的光流場對比. (a)真實光流;(b)各向同性正則項;(c)各向異性正則項

    Figure  1.  Comparison of optical flow fields with isotropic and anisotropic regularization terms: (a) ground truth; (b) isotropic regularization term; (c) anisotropic regularization term

    圖  2  增加非局部平滑項前后的光流場結果對比. (a)真實光流; (b)未加局部平滑項; (c)加局部平滑項

    Figure  2.  Comparison of optical flow fields before and after adding non-local smoothing term: (a) ground truth; (b) without non-local smoothing term; (c) with non-local smoothing term

    圖  3  原始參考圖像和浮動圖像. (a)參考圖像;(b)浮動圖像

    Figure  3.  Original reference and floating images: (a) reference images; (b) floating images

    圖  4  核磁共振圖像糾正結果對比. (a)H-S算法;(b)Brox算法;(c)SIFT Flow算法;(d)本文算法

    Figure  4.  Comparison of aligned results on MRI images: (a) H-S method; (b) Brox method; (c) SIFT flow method; (d) proposed method

    圖  5  柔性圖像糾正結果對比. (a)H-S算法;(b)Brox算法;(c)SIFT Flow算法;(d)本文算法

    Figure  5.  Comparison of aligned results on flexible images: (a) H-S method; (b)Brox method; (c)SIFT flow method; (d) proposed method

    圖  6  人臉圖像糾正結果對比. (a)H-S算法;(b)Brox算法;(c)SIFT Flow算法;(d)本文算法

    Figure  6.  Comparison of aligned results on human face images: (a) H-S method; (b) Brox method; (c) SIFT flow method; (d) proposed method

    表  1  不同算法的峰值信噪比對比結果

    Table  1.   Comparison of PSNR values of different methods?dB

    圖像 不同算法
    H-S Brox SIFT Flow 本文算法
    核磁共振 13.30 16.99 16.89 18.09
    柔性 18.69 21.57 25.23 25.24
    人臉 20.27 20.35 22.08 22.82
    下載: 導出CSV

    表  2  不同算法的歸一化互信息對比結果

    Table  2.   Comparison of NMI values of different methods

    圖像 不同算法
    H-S Brox SIFT Flow 本文算法
    核磁共振 1.0279 1.1031 1.1255 1.1545
    柔性 1.5076 1.5027 1.1790 1.5216
    人臉 1.4180 1.4324 1.4060 1.4554
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Chen S W, Zhang S X, Yang X G, et al. Registration of visual-infrared images based on ellipse symmetrical orientation moment. Chin J Eng, 2017, 39(7): 1107 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201707018.htm

    陳世偉, 張勝修, 楊小岡, 等. 基于橢圓對稱方向矩的可見光與紅外圖像配準算法. 工程科學學報, 2017, 39(7): 1107 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201707018.htm
    [2] Pan B, Ben J, Yan J W, et al. Method to extract micro device profile in ultrasound image under global constraints. J Harbin Inst Technol, 2018, 50(1): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201801005.htm

    潘博, 賁進, 閆佳雯, 等. 全局約束下超聲圖像微器械輪廓提取方法. 哈爾濱工業大學學報, 2018, 50(1): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201801005.htm
    [3] Dellinger F, Delon J, Gousseau Y, et al. SAR-SIFT: a SIFT-like algorithm for SAR images. IEEE Trans Geosci Remote Sens, 2015, 53(1): 453 doi: 10.1109/TGRS.2014.2323552
    [4] Sariyanidi E, Gunes H, Cavallaro A. Automatic analysis of facial affect: a survey of registration, representation, and recognition. IEEE Trans Pattern Anal Mach Intell, 2015, 37(6): 1113 doi: 10.1109/TPAMI.2014.2366127
    [5] Thirion J P. Image matching as a diffusion process: an analogy with Maxwell's demons. Med Image Anal, 1998, 2(3): 243 doi: 10.1016/S1361-8415(98)80022-4
    [6] Horn B K P, Schunck B G. Determining optical flow. Artif Intell, 1981, 17(1-3): 185 doi: 10.1016/0004-3702(81)90024-2
    [7] Nagel H H, Enkelmann W. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans Pattern Anal Mach Intell, 1986, 8(5): 565 doi: 10.1109/TPAMI.1986.4767833
    [8] Brox T, Malik J. Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans Pattern Anal Mach Intell, 2011, 33(3): 500 doi: 10.1109/TPAMI.2010.143
    [9] Amiaz T, Lubetzky E, Kiryati N. Coarse to over-fine optical flow estimation. Pattern Recognit, 2007, 40(9): 2496 doi: 10.1016/j.patcog.2006.09.011
    [10] Bao L C, Yang Q X, Jin H L. Fast edge-preserving patch match for large displacement optical flow//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, 2014: 3534 doi: 10.1109/CVPR.2014.452
    [11] Liu C, Yuen J, Torralba A. SIFT flow: dense correspondence across scenes and its applications. IEEE Trans Pattern Anal Mach Intell, 2011, 33(5): 978 doi: 10.1109/TPAMI.2010.147
    [12] Sun D Q, Roth S, Black M J. A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int J Comput Vision, 2014, 106(2): 115 doi: 10.1007/s11263-013-0644-x
    [13] Liu H B, Chang F L. Moving object detection by optical flow method based on adaptive weight coefficient. Opt Precis Eng, 2016, 24(2): 460 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201602027.htm

    劉紅彬, 常發亮. 權重系數自適應光流法運動目標檢測. 光學精密工程, 2016, 24(2): 460 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201602027.htm
    [14] Revaud J, Weinzaepfel P, Harchaoui Z, et al. EpicFlow: edge-preserving interpolation of correspondences for optical flow//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Boston, 2015: 1164 doi: 10.1109/CVPR.2015.7298720
    [15] Li S, Fan X G, Xu Y L, et al. Bio-inspired motion-adaptive estimation algorithm of sequence image. Chin J Eng, 2017, 39(8): 1238 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201708014.htm

    李帥, 樊曉光, 許悅雷, 等. 序列圖像運動自適應V1-MT光流估計算法. 工程科學學報, 2017, 39(8): 1238 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201708014.htm
    [16] Dosovitskiy A, Fischer P, Ilg E, et al. FlowNet: learning optical flow with convolutional networks//Proceedings of the IEEE International Conference on Computer Vision. Santiago, 2015: 2758 https://www.researchgate.net/publication/304409658_FlowNet_Learning_Optical_Flow_with_Convolutional_Networks
    [17] He K, Yan J X, Wei Y, et al. Non-rigid image registration using improved optical flow field. J Tianjin Univ Sci Technol, 2018, 51(5): 491 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201805008.htm

    何凱, 閆佳星, 魏穎, 等. 基于改進光流場模型的非剛性圖像配準. 天津大學學報: 自然科學與工程技術版, 2018, 51(5): 491 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201805008.htm
  • 加載中
圖(6) / 表(2)
計量
  • 文章訪問數:  1196
  • HTML全文瀏覽量:  424
  • PDF下載量:  36
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-05-16
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回