<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

半連續鑄造7136超高強鋁合金的組織特征及均勻化處理工藝

李佳樂 周成 黃旭東 張志豪 呂丹

李佳樂, 周成, 黃旭東, 張志豪, 呂丹. 半連續鑄造7136超高強鋁合金的組織特征及均勻化處理工藝[J]. 工程科學學報, 2019, 41(7): 914-921. doi: 10.13374/j.issn2095-9389.2019.07.010
引用本文: 李佳樂, 周成, 黃旭東, 張志豪, 呂丹. 半連續鑄造7136超高強鋁合金的組織特征及均勻化處理工藝[J]. 工程科學學報, 2019, 41(7): 914-921. doi: 10.13374/j.issn2095-9389.2019.07.010
LI Jia-le, ZHOU Cheng, HUANG Xu-dong, ZHANG Zhi-hao, Lü Dan. Microstructure and homogenization process of semi-continuous casting 7136 ultra high-strength aluminum alloy[J]. Chinese Journal of Engineering, 2019, 41(7): 914-921. doi: 10.13374/j.issn2095-9389.2019.07.010
Citation: LI Jia-le, ZHOU Cheng, HUANG Xu-dong, ZHANG Zhi-hao, Lü Dan. Microstructure and homogenization process of semi-continuous casting 7136 ultra high-strength aluminum alloy[J]. Chinese Journal of Engineering, 2019, 41(7): 914-921. doi: 10.13374/j.issn2095-9389.2019.07.010

半連續鑄造7136超高強鋁合金的組織特征及均勻化處理工藝

doi: 10.13374/j.issn2095-9389.2019.07.010
基金項目: 

國家重點研發計劃資助項目 2016YFB0300900

NSFC-遼寧聯合基金資助項目 U1708251

詳細信息
    通訊作者:

    周成, E-mail: zhouc@ustb.edu.cn

  • 中圖分類號: TG142.71

Microstructure and homogenization process of semi-continuous casting 7136 ultra high-strength aluminum alloy

More Information
  • 摘要: 以半連續鑄造7136鋁合金為研究對象, 以鑄態組織分析為基礎, 采用雙級均勻化. 結果表明: 與其他7×××系鋁合金相比, 7136鋁合金鑄態組織沒有明顯的層片狀α(Al)+T共晶相的特征, 也沒有發現S相的存在. 基體中的彌散相為微米級的圓形或棒狀MgZn2相, Mg元素和Zn元素隨著液態合金的凝固, 在Al基體中以MgZn2相的形式析出, 為了平衡Mg元素和Zn元素的分配系數, Mg元素和Zn元素從液態向固態遷移, 這也是使得晶內Zn元素和Mg元素偏高的原因. 經過462℃, 24 h單級均勻化, 殘留相大致消除. 隨著均勻化時間的延長, 殘留相有減少的趨勢, 但作用相對較小. 經過450℃, 24 h+470℃, 24 h雙級均勻化, 差示掃描量熱法獲取的峰值非常小, 晶間除了少量高熔點Al7Cu2Fe相殘留, Al2Cu等其他相已基本消除, 均勻化效果顯著.

     

  • 圖  1  7136鋁合金鑄態組織的光學顯微分析. (a)邊緣;(b)1/2半徑;(c)中心

    Figure  1.  Optical microscopic analysis of the cast microstructure of the 7136 aluminum alloy: (a)edge; (b)1/2 radius; (c)center

    圖  2  7136鋁合金鑄態組織掃描電鏡分析.(a)中心樣品; (b)邊部樣品

    Figure  2.  SEM analysis of the cast microstructure of the 7136 aluminum alloy: (a)center of the sample; (b)edge of the sample

    圖  3  7136鋁合金鑄態組織線掃描分析.(a)鑄態組織; (b)線掃描

    Figure  3.  Line scanning analysis of the cast microstructure of the 7136 aluminum alloy: (a) cast microstructure; (b)line scan

    圖  4  7136鋁合金鑄態組織面掃描分析. (a)Cu元素;(b)Mg元素;(c)Zn元素

    Figure  4.  Surface scanning analysis of the cast microstructure of the 7136 aluminum alloy: (a)Cu; (b)Mg; (c)Zn

    圖  5  7136鋁合金鑄態組織差示掃描量熱法曲線

    Figure  5.  DSC curve of the cast microstructure of the 7136 aluminum alloy

    圖  6  不同保溫溫度條件下的均勻化組織. (a)455 ℃,24 h;(b)457 ℃,24 h;(c)459 ℃,24 h;(d)461 ℃,24 h;(e)463 ℃,24 h;(f)465 ℃,24 h;(g)467 ℃,24 h;(h) 469 ℃,24 h

    Figure  6.  Homogenized microstructure at different holding temperatures: (a)455 ℃, 24 h; (b)457 ℃, 24 h; (c)459 ℃, 24 h; (d)461 ℃, 24 h; (e)463 ℃, 24 h; (f)465 ℃, 24 h; (g)467 ℃, 24 h; (h) 469 ℃, 24 h

    圖  7  鑄態和單級均勻化后的差示掃描量熱法曲線

    Figure  7.  DSC curves after as-cast and single-stage homogenization

    圖  8  7136鋁合金在462 ℃條件下保溫不同時間的光學顯微組織. (a) 462 ℃,36 h;(b)462 ℃,48 h;(c)462 ℃,72 h

    Figure  8.  Optical microstructure of the 7136 aluminum alloy kept at 462 ℃ for different times: (a) 462 ℃, 36 h; (b)462 ℃, 48 h; (c)462 ℃, 72 h

    圖  9  7136鋁合金在462 ℃條件下保溫不同時間的掃描電鏡圖. (a) 462 ℃,36 h;(b)462 ℃,48 h;(c)462 ℃,72 h

    Figure  9.  SEM image of the 7136 aluminum alloy kept at 462 ℃ for different times: (a) 462 ℃, 36 h; (b)462 ℃, 48 h; (c)462 ℃, 72 h

    圖  10  7136鋁合金雙級均勻化的掃描電鏡圖(低倍). (a) 450 ℃,24 h+470 ℃,12 h; (b) 450 ℃,24 h+470 ℃,24 h

    Figure  10.  SEM image of two-stage homogenization of the 7136 aluminum alloy (low magnification): (a)450 ℃, 24 h+470 ℃, 12 h; (b) 450 ℃, 24 h+470 ℃, 24 h

    圖  11  7136鋁合金雙級均勻化的掃描電鏡圖(高倍). (a) 450 ℃, 24 h+470 ℃, 12 h; (b) 450 ℃, 24 h+470 ℃, 24 h

    Figure  11.  SEM image of two-stage homogenization of the 7136 aluminum alloy(high magnification): (a) 450 ℃, 24 h+470 ℃, 12 h; (b) 450 ℃, 24 h+470 ℃, 24 h

    圖  12  鑄態、單級均勻化和雙級均勻化后的差示掃描量熱法曲線

    Figure  12.  DSC curves after as-cast, single-stage homogenization and two-stage homogenization

    表  1  7136鋁合金成分(質量分數)

    Table  1.   Composition of 7136 aluminum alloy?%

    牌號 Zn Mg Cu Zr Cr Mn Ti Fe Si
    7136 8.4~9.4 1.8~2.5 1.9~2.5 0.1~0.2 0.05 0.05 0.1 0.15 0.12
    實測成分 9.31 2.13 2.11 0.12 < 0.01 < 0.01 0.018 0.077 0.012
    下載: 導出CSV

    表  2  圖 2中各點能譜分析

    Table  2.   Spectrum analysis of each point in Fig. 2

    位置 Al Mg Zn Cu Fe
    1 74.48 0.92 3.09 21.50 0.01
    2 71.68 0.91 3.25 24.09 0.01
    3 87.39 0 1.61 11.00 0
    4 93.44 2.19 4.38 0 0
    下載: 導出CSV

    表  3  圖 9中各點能譜分析

    Table  3.   Spectrum analysis of each point in Fig. 9

    位置 Al Mg Zn Cu
    1 75.79 0 0 24.21
    2 71.06 1.72 1.09 26.13
    3 61.90 0 0 38.10
    4 78.66 0 0 21.34
    5 48.82 9.3 0 41.88
    下載: 導出CSV

    表  4  圖 11中各點能譜分析

    Table  4.   Spectrum analysis of each point in Fig. 11

    位置 Al Mg Zn Cu Fe
    1 54.88 1.18 4.22 35.46 4.26
    2 62.54 1.33 6.86 27.31 1.96
    3 59.26 1.78 2.84 32.32 3.80
    4 62.13 1.48 3.46 27.12 5.81
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Immarigeon J P, Holt R T, Koul A K, et al. Lightweight materials for aircraft applications. Mater Charact, 1995, 35(1): 41 doi: 10.1016/1044-5803(95)00066-6
    [2] Williams J C, Starke Jr E A. Progress in structural materials for aerospace systems. Acta Mater, 2003, 51(19): 5775 doi: 10.1016/j.actamat.2003.08.023
    [3] Starke Jr E A, Staley J T. Application of modern aluminum alloys to aircraft. Prog Aerosp Sci, 1996, 32(2-3): 131 doi: 10.1016/0376-0421(95)00004-6
    [4] Jia P F, Cao Y H, Geng Y D, et al. Effects of d. c. current on the phase transformation in 7050 alloy during homogenization. Mater Charact, 2014, 96: 21 doi: 10.1016/j.matchar.2014.07.017
    [5] Liu J, Kulak M. A new paradigm in the design of aluminum alloys for aerospace applications. Mater Sci Forum, 2000, 331-337: 127 doi: 10.4028/www.scientific.net/MSF.331-337.127
    [6] Shu W X, Liu J C, Hou L G, et al. Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization. Int J Miner Metall Mater, 2014, 21(12): 1215 doi: 10.1007/s12613-014-1029-z
    [7] Li L, Deng Z Z, Han Y, et al. Study on cast and homogenized microstructure of a new super-high strength aluminum alloy. Light Alloy Fabric Technol, 2011, 39(12): 20 doi: 10.3969/j.issn.1007-7235.2011.12.002

    李煉, 鄧楨楨, 韓逸, 等. 新型超高強鋁合金鑄態及均勻化態組織研究. 輕合金加工技術, 2011, 39(12): 20 doi: 10.3969/j.issn.1007-7235.2011.12.002
    [8] Robson J D. Microstructural evolution in aluminium alloy 7050 during processing. Mater Sci Eng A, 2004, 382(1-2): 112 doi: 10.1016/j.msea.2004.05.006
    [9] Yang X B, Chen J H, Liu J Z, et al. Spherical constituent particles formed by a multistage solution treatment in Al-Zn-Mg-Cu alloys. Mater Charact, 2013, 83: 79 doi: 10.1016/j.matchar.2013.06.005
    [10] Xiao T, Deng Y L, Ye L Y, et al. Effect of three-stage homogenization on mechanical properties and stress corrosion cracking of Al-Zn-Mg-Zr alloys. Mater Sci Eng A, 2016, 675: 280 doi: 10.1016/j.msea.2016.08.071
    [11] Mahathaninwong N, Plookphol T, Wannasin J, et al. T6 heat treatment of rheocasting 7075 Al alloy. Mater Sci Eng A, 2012, 532: 91 doi: 10.1016/j.msea.2011.10.068
    [12] Jia P F, Cao Y H, Geng Y D, et al. Studies on the microstructures and properties in phase transformation of homogenized 7050 alloy. Mater Sci Eng A, 2014, 612: 335 doi: 10.1016/j.msea.2014.06.027
    [13] Li J F, Peng Z W, Li C X, et al. Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments. Trans Nonferrous Met Soc China, 2008, 18(4): 755 doi: 10.1016/S1003-6326(08)60130-2
    [14] Liu Y, Jiang D M, Xie W L, et al. Solidification phases and their evolution during homogenization of a DC cast Al-8.35Zn-2.5Mg-2.25Cu alloy. Mater Charact, 2014, 93: 173 doi: 10.1016/j.matchar.2014.04.004
    [15] Wen K, Xiong B Q, Fan Y Q, et al. Transformation and dissolution of second phases during solution treatment of an Al-Zn-Mg-Cu alloy containing high zinc. Rare Met, 2018, 37(5): 376 doi: 10.1007/s12598-016-0768-6
  • 加載中
圖(12) / 表(4)
計量
  • 文章訪問數:  1025
  • HTML全文瀏覽量:  482
  • PDF下載量:  23
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-06-27
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回