<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于多場耦合碳/碳復合材料傳熱及燒蝕響應

孫學文 楊海波 米濤

孫學文, 楊海波, 米濤. 基于多場耦合碳/碳復合材料傳熱及燒蝕響應[J]. 工程科學學報, 2020, 42(8): 1040-1047. doi: 10.13374/j.issn2095-9389.2019.06.30.002
引用本文: 孫學文, 楊海波, 米濤. 基于多場耦合碳/碳復合材料傳熱及燒蝕響應[J]. 工程科學學報, 2020, 42(8): 1040-1047. doi: 10.13374/j.issn2095-9389.2019.06.30.002
SUN Xue-wen, YANG Hai-bo, MI Tao. Heat transfer and ablation of carbon/carbon composites based on multi-field coupling[J]. Chinese Journal of Engineering, 2020, 42(8): 1040-1047. doi: 10.13374/j.issn2095-9389.2019.06.30.002
Citation: SUN Xue-wen, YANG Hai-bo, MI Tao. Heat transfer and ablation of carbon/carbon composites based on multi-field coupling[J]. Chinese Journal of Engineering, 2020, 42(8): 1040-1047. doi: 10.13374/j.issn2095-9389.2019.06.30.002

基于多場耦合碳/碳復合材料傳熱及燒蝕響應

doi: 10.13374/j.issn2095-9389.2019.06.30.002
基金項目: 國家重大科學儀器設備開發專項資助項目(2011140145);河北省科技廳資助項目(17211117)
詳細信息
    通訊作者:

    E-mail:yhb@ustb.edu.cn

  • 中圖分類號: V244.1

Heat transfer and ablation of carbon/carbon composites based on multi-field coupling

More Information
  • 摘要: 碳/碳復合材料作為熱防護材料多用在高超聲速飛行器鼻錐、機翼前緣等位置。為準確預測其傳熱及燒蝕響應,采用多場耦合策略,考慮外部流場熱化學非平衡效應、固體材料傳熱以及材料表面燒蝕,建立高超聲速氣動熱環境下碳/碳復合材料的流?熱?燒蝕多場耦合模型,預測碳/碳復合材料瞬態溫度場分布、燒蝕速率以及燒蝕外形變化等。計算得到材料模型駐點區壁面溫度和熱流值隨著時間的推移發生了顯著的變化,初始時刻熱流值較大,1 s時駐點熱流密度為17.22 MW?m?2,隨著時間推移,壁面溫度增大,駐點區溫度梯度減小,熱流值也減小,30 s時駐點熱流密度為10.22 MW?m?2。材料模型駐點區的溫度較高,材料表面反應活躍,燒蝕較為嚴重,而模型側面只發生少量燒蝕,燒蝕前后材料模型外形發生一定的變化,前緣半徑增大,30 s時材料駐點燒蝕深度為17.47 mm。結果表明:在高超聲速氣動熱環境下,碳/碳材料模型發生一定的燒蝕后退,導致外部流場以及熱載荷發生變化,采用流?熱?燒蝕多場耦合模型可有效預測不同時刻材料的傳熱及燒蝕響應,為熱防護系統的設計提供一定的參考。

     

  • 圖  1  氣?固界面能量傳遞示意圖

    Figure  1.  Energy transfer at the gas?solid interface

    圖  2  流固耦合示意及界面數據傳遞。(a)流固耦合示意圖;(b)非匹配網格間的數據傳遞

    Figure  2.  Fluid structure coupling and data transfer at the interface: (a) fluid structure coupling; (b) data transfer between unmatched grids

    圖  3  耦合計算流程

    Figure  3.  Flow of coupled computing

    圖  4  碳/碳復合材料前緣模型

    Figure  4.  Leading edge of carbon/carbon composite

    圖  5  外部流場及材料模型網格劃分。(a)流場網格示意圖;(b)材料前緣模型網格示意

    Figure  5.  External flow field grids and material model: (a) external flow field grids; (b) leading edge model grids

    圖  6  流場馬赫數(a)和溫度(b)云圖分布

    Figure  6.  Mach (a) and temperature (b) distribution of the flow field

    圖  7  材料模型的燒蝕外形

    Figure  7.  Material model ablation profile

    圖  8  材料模型壁面燒蝕深度分布

    Figure  8.  Distribution of the ablation depth along the wall

    圖  9  不同時刻壁面熱流分布

    Figure  9.  Heat flow distribution

    圖  10  不同時刻外壁面的溫度分布

    Figure  10.  Distribution of wall temperature

    圖  11  燒蝕外形預測

    Figure  11.  Ablation profile prediction

    圖  12  駐點處燒蝕速率隨時間的變化

    Figure  12.  Rate of recession at the point of stagnation

    表  1  碳/碳材料性能參數

    Table  1.   Performance parameters of carbon/carbon materials

    Density/
    (kg·m?3)
    Specific heat/
    (J·kg?1·K?1)
    Thermal conductivity/
    (W·m?1·k?1)
    Radiation coefficientModulus of elasticity/
    GPa
    Poisson’s
    ratio
    1800840150.8690.3
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Karimi M S, Oboodi M J. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows. <italic>Heat Mass Transfer</italic>, 2019, 55(2): 547 doi: 10.1007/s00231-018-2416-1
    [2] Wang L, Wang Y L. Research progress and trend analysis of hypersonic vehicle thermal protection technology. <italic>Aerosp Mater Technol</italic>, 2016, 46(1): 1 doi: 10.3969/j.issn.1007-2330.2016.01.001

    王璐, 王友利. 高超聲速飛行器熱防護技術研究進展和趨勢分析. 宇航材料工藝, 2016, 46(1):1 doi: 10.3969/j.issn.1007-2330.2016.01.001
    [3] Sziroczak D, Smith H. A review of design issues specific to hypersonic flight vehicles. <italic>Prog Aerosp Sci</italic>, 2016, 84: 1 doi: 10.1016/j.paerosci.2016.04.001
    [4] Gulli S, Maddalena L. Arc-jet testing of a variable-transpiration-cooled and uncoated carbon–carbon nose cone. <italic>J Spacecraft Rockets</italic>, 2019, 56(3): 780 doi: 10.2514/1.A34176
    [5] Li Z P. Major advancement and development trends of TPS composites. <italic>Acta Mater Compos Sin</italic>, 2011, 28(2): 1

    李仲平. 防熱復合材料發展與展望. 復合材料學報, 2011, 28(2):1
    [6] Albano M, Alifanov O M, Budnik S A, et al. Carbon/carbon high thickness shell for advanced space vehicles. <italic>Int J Heat Mass Transfer</italic>, 2019, 128: 613 doi: 10.1016/j.ijheatmasstransfer.2018.05.106
    [7] Stern E C, Poovathingal S, Nompelis I, et al. Nonequilibrium flow through porous thermal protection materials, Part I: Numerical methods. <italic>J Comput Phys</italic>, 2019, 380: 408 doi: 10.1016/j.jcp.2017.09.011
    [8] Natali M, Kenny J M, Torre L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review. <italic>Prog Mater Sci</italic>, 2016, 84: 192 doi: 10.1016/j.pmatsci.2016.08.003
    [9] Wang Y Q, Risch T K, Koo J H. Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator. <italic>Aerosp Sci Technol</italic>, 2019, 91: 301 doi: 10.1016/j.ast.2019.05.039
    [10] Tang S F, Hu C L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. <italic>J Mater Sci Technol</italic>, 2017, 33(2): 117 doi: 10.1016/j.jmst.2016.08.004
    [11] Lee S, Park G, Kim J G, et al. Evaluation system for ablative material in a high-temperature torch. <italic>Int J Aeronaut Space Sci</italic>, 2019, 20: 620 doi: 10.1007/s42405-019-00185-2
    [12] Helber B, Dias B, Bariselli F, et al. Analysis of meteoroid ablation based on plasma wind-tunnel experiments, surface characterization, and numerical simulations. <italic>Astrophys J</italic>, 2019, 876(2): 120 doi: 10.3847/1538-4357/ab16f0
    [13] Zhang K L, Bai S X, Zhu L, et al. Ablation and surface heating behaviors of graphite based Ir-Al coating in a plasma wind tunnel. <italic>Surf Coat Technol</italic>, 2019, 358: 371 doi: 10.1016/j.surfcoat.2018.10.047
    [14] Martin A, Boyd I D. Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation. <italic>J Spacecraft Rockets</italic>, 2015, 52(1): 89 doi: 10.2514/1.A32847
    [15] Cross P G, Boyd I D. Reduced reaction mechanism for rocket nozzle ablation simulations. <italic>J Thermophys Heat Transfer</italic>, 2018, 32(2): 429 doi: 10.2514/1.T5291
    [16] Mortensen C H, Zhong X L. Real gas and surface ablation effects on hypersonic boundary layer instability over a blunt cone. <italic>AIAA J</italic>, 2013, 54(3): 976
    [17] Chen Y K, Milos F S. Multidimensional finite volume fully implicit ablation and thermal response code. <italic>J Spacecraft Rockets</italic>, 2018, 55(4): 914 doi: 10.2514/1.A34184
    [18] Chen Y K, G?k?en T, Edquist K T. Two-dimensional ablation and thermal response analyses for mars science laboratory heat shield. <italic>J Spacecraft Rockets</italic>, 2015, 52(1): 134 doi: 10.2514/1.A32868
    [19] Kumar R. Numerical investigation of gas-surface interactions due to ablation of high-speed vehicles. <italic>J Spacecraft Rockets</italic>, 2016, 53(3): 538 doi: 10.2514/1.A33433
    [20] Li W J, Huang H M, Tian Y, et al. Nonlinear analysis on thermal behavior of charring materials with surface ablation. <italic>Int J Heat Mass Transfer</italic>, 2015, 84: 245 doi: 10.1016/j.ijheatmasstransfer.2015.01.004
    [21] Candler G V, Alba C R, Greendyke R B. Characterization of carbon ablation models including effects of gas-phase chemical kinetics. <italic>J Thermophys Heat Transfer</italic>, 2017, 31(3): 512 doi: 10.2514/1.T4752
    [22] Qin F, Peng L N, Li J, et al. Numerical simulations of multiscale ablation of carbon/carbon throat with morphology effects. <italic>AIAA J</italic>, 2017, 55(10): 3476 doi: 10.2514/1.J055534
    [23] Yin T T, Zhang Z W, Li X F, et al. Modeling ablative behavior and thermal response of carbon/carbon composites. <italic>Comput Mater Sci</italic>, 2014, 95: 35 doi: 10.1016/j.commatsci.2014.07.013
    [24] Meng S H, Zhou Y J, Xie W H, et al. Multiphysics coupled fluid/thermal/ablation simulation of carbon/carbon composites. <italic>J Spacecraft Rockets</italic>, 2016, 53(5): 930 doi: 10.2514/1.A33612
    [25] Chen W. Numerical analyses of ablative behavior of C/C composite materials. <italic>Int J Heat Mass Transfer</italic>, 2016, 95: 720 doi: 10.1016/j.ijheatmasstransfer.2015.12.031
    [26] Gupta R N, Yos J M, Thompson R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. <italic>NASA Reference Publication 1232</italic>, 1990
  • 加載中
圖(12) / 表(1)
計量
  • 文章訪問數:  4713
  • HTML全文瀏覽量:  1094
  • PDF下載量:  133
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-06-30
  • 刊出日期:  2020-09-11

目錄

    /

    返回文章
    返回