-
摘要: 鋼液真空循環脫氣法(RH)精煉能夠利用高真空和鋼液循環流動有效脫氣和去除夾雜物。同時,煉鋼環境下 CO2可與鋼液中[C]反應生成CO提高攪拌強度。因此,本文提出將CO2作為RH提升氣進行真空精煉。針對CO2在RH精煉過程的冶金反應行為特性,通過熱力學理論分析了極限真空條件下CO2脫碳的有利條件及限度,同時搭建了CO2作RH提升氣工業試驗平臺,通過工業試驗對比研究了CO2/Ar分別作提升氣時對鋼液精煉過程的影響。結果表明,若單純考慮CO2與碳反應,則當鋼液中[C]低于1.8×10?6,CO2仍然具有氧化碳元素的能力。然而,CO2對鋼液中碳鋁元素存在選擇性氧化,當鋁含量低于一定程度時,CO2主要參與脫碳反應;反之,CO2則會造成一定鋁損,因此若采用新工藝需考慮鋁合金加入時機以及加入量。此外,CO2用作RH提升氣可獲得與Ar效果相當甚至更優的脫氫效果,噴吹同等量CO2并未造成鋼液的大幅溫降,因此CO2完全有潛力作為RH提升氣,進而完成精煉。Abstract: Developing new technologies that can utilize CO2 as a resource or reduce CO2 emission is an urgent need in the iron and steel industry. The Ruhrstahl-Heraeus (RH) refining process can effectively remove gas and inclusions from molten steel by applying a high vacuum and intense circulation flow of the molten steel. Meanwhile, at the steelmaking temperature, CO2 can react with carbon in the molten steel to generate CO bubbles, and this enhances the molten bath stirring strength. Therefore, a technology involving the use of CO2 as the lifting gas in RH refining was proposed. To study the applicability of CO2 in RH refining, the favorable conditions and limits of CO2 decarburization under vacuum conditions were analyzed through thermodynamics. Meanwhile, an industrial test platform for CO2 as RH lifting gas was set up, and the effects of CO2/Ar as lifting gas on the refining process of molten steel were comparatively studied through industrial tests. The results show that if only the reaction between CO2 and carbon is considered, CO2 can still oxidize carbon elements when the carbon content is less than 1.8×10?6. However, CO2 selectively oxidizes carbon and aluminum in molten steel. When the aluminum content is below a certain level, CO2 mainly participates in a decarburization reaction; otherwise, CO2 will cause certain aluminum loss. Therefore, if the new process is adopted, the timing and amount of aluminum alloy addition should be considered. In addition, CO2 can be used as RH lifting gas to obtain a dehydrogenation effect equivalent to or even better than that of Ar. Meanwhile, injecting the same amount of CO2 did not cause a large temperature drop of molten steel; therefore, CO2 has the potential to be used as RH lifting gas to complete refining.
-
Key words:
- carbon dioxide /
- RH refining /
- decarburization reaction /
- dehydrogenation effect /
- temperature drop
-
表 1 鋼液進站成分(質量分數)
Table 1. Steel composition of ladle pulling in RH
% 鋼種 C Al O Si Mn P S Ni Cr A 0.1280 0.0428 0.0040 0.2020 1.4314 0.0138 0.0041 0.0282 0.0400 B 0.1310 0.0210 0.0050 0.2436 1.2955 0.0147 0.0053 0.0186 0.0310 表 2 氣體控制策略及試驗方案
Table 2. Gas control strategy and test schemes
方案 鋼種 提升氣 流量(標態)/
(m3·h?1)處理時間/
min真空度/
Pa爐數 1 A Ar 100 18 67 10 2 A CO2 100 18 67 10 3 B CO2 100 18 67 10 259luxu-164 -
參考文獻
[1] Meijer K, Denys M, Lasar J, et al. ULCOS: ultra-low CO2 steelmaking. Ironmaking Steelmaking, 2009, 36(4): 249 doi: 10.1179/174328109X439298 [2] Quader M A, Ahmed S, Dawal S Z, et al. Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program. Renewable Sustainable Energy Rev, 2016, 55: 537 doi: 10.1016/j.rser.2015.10.101 [3] Miwa T, Okuda H. CO2 ultimate reduction in steelmaking process by innovative technology for cool earth 50(COURSE50). J Jpn Inst Energy, 2010, 89: 28 [4] Jin R J, Zhu R, Feng L X, et al. Experimental study of steelmaking with CO2 and O2 mixed blowing. J Univ Sci Technol Beijing, 2007, 29(Suppl 1): 77靳任杰, 朱榮, 馮立新, 等. 二氧化碳—氧氣混合噴吹煉鋼實驗研究. 北京科技大學學報, 2007, 29(增刊1): 77 [5] Yin Z J, Zhu R, Yi C, et al. Fundamental research on controlling BOF dust by COMI steel-making process. Iron Steel, 2009, 44(10): 92 doi: 10.3321/j.issn:0449-749X.2009.10.021尹振江, 朱榮, 易操, 等. 應用COMI煉鋼工藝控制轉爐煙塵基礎研究. 鋼鐵, 2009, 44(10):92 doi: 10.3321/j.issn:0449-749X.2009.10.021 [6] Yi C, Zhu R, Chen B Y, et al. Experimental research on reducing the dust of BOF in CO2 and O2 mixed blowing steelmaking process. ISIJ Int, 2009, 49(11): 1694 doi: 10.2355/isijinternational.49.1694 [7] Zhu R, Bi X R, Lü M, et al. Research on steelmaking dust based on difference of Mn, Fe and Mo vapor pressure. Adv Mater Res, 2011, 284-286: 1216 doi: 10.4028/www.scientific.net/AMR.284-286.1216 [8] Li Z, Zhu R, Ma G, et al. Laboratory investigation into reduction the production of dust in basic oxygen steelmaking. Ironmaking Steelmaking, 2017, 44(8): 601 doi: 10.1080/03019233.2016.1223906 [9] Zhu R, Yi C, Chen B Y, et al. Inner circulation research of steelmaking dust by COMI steelmaking process. Energy Metall Ind, 2010, 29(1): 48 doi: 10.3969/j.issn.1001-1617.2010.01.017朱榮, 易操, 陳伯瑜, 等. 應用COMI煉鋼工藝控制煉鋼煙塵內循環的研究. 冶金能源, 2010, 29(1):48 doi: 10.3969/j.issn.1001-1617.2010.01.017 [10] Bi X R, Liu R Z, Zhu R, et al. Research on mechanism of dust generation in converter. Ind Heat, 2010, 39(6): 13 doi: 10.3969/j.issn.1002-1639.2010.06.004畢秀榮, 劉潤藻, 朱榮, 等. 轉爐煉鋼煙塵形成機理研究. 工業加熱, 2010, 39(6):13 doi: 10.3969/j.issn.1002-1639.2010.06.004 [11] Zhang W, Li Z Z, Zhu R, et al. Experimental study of CO2 blowing in steelmaking process. Ind Heat, 2015, 44(2): 41 doi: 10.3969/j.issn.1002-1639.2015.02.012張偉, 李智崢, 朱榮, 等. 煉鋼過程噴吹CO2的實驗研究. 工業加熱, 2015, 44(2):41 doi: 10.3969/j.issn.1002-1639.2015.02.012 [12] Lü M, Zhu R, Wei X Y, et al. Research on top and bottom mixed blowing CO2 in converter steelmaking process. Steel Res Int, 2012, 83(1): 11 doi: 10.1002/srin.201100166 [13] Lü M, Zhu R, Bi X R, et al. Application research of carbon dioxide in BOF steelmaking process. J Univ Sci Technol Beijing, 2011, 33(Suppl 1): 126呂明, 朱榮, 畢秀榮, 等. 二氧化碳在轉爐煉鋼中的應用研究. 北京科技大學學報, 2011, 33(增刊1): 126 [14] Mannion F J, Fruehan R J. Decarburization kinetics of liquid Fe-Csat alloys by CO2. Metall Mater Trans B, 1989, 20(6): 853 doi: 10.1007/BF02670190 [15] Gu Y L, Wang H J, Zhu R, et al. Study on experiment and mechanism of bottom blowing CO2 during the LF refining process. Steel Res Int, 2014, 85(4): 589 doi: 10.1002/srin.201300106 [16] Dong K, Zhu R, Liu R Z, et al. Influence of bottom blowing CO2 in LF on molten steel quality and erosion of ventilated bricks. J Univ Sci Technol Beijing, 2014, 36(Suppl 1): 226董凱, 朱榮, 劉潤藻, 等. LF爐底吹CO2氣體對鋼液質量影響及透氣磚侵蝕的研究. 北京科技大學學報, 2014, 36(增刊1): 226 [17] Han B C, Zhu R, Zhu Y Q, et al. Research on Selective Oxidation of Carbon and Aluminum with Introduction of CO2 in RH Refining of Low-Carbon Steel Process. Metall Mater Trans B, 2018, 49(6): 3544 doi: 10.1007/s11663-018-1417-2 [18] Han B C, Wei G S, Zhu R, et al. Utilization of carbon dioxide injection in BOF–RH steelmaking process. J CO2 Utilization, 2019, 34: 53 doi: 10.1016/j.jcou.2019.05.038 [19] Lü M, Zhu R, Yang L Z. High Efficiency Dephosphorization by Mixed Injection during Steelmaking Process. Steel Res Int, 2019, 90(3): 1800454 doi: 10.1002/srin.201800454 [20] Guo M X, Chen X W, Xiao Q A, et al. Metallurgical character of bottom blowing CO2-N2 gas in combined-blown converter. J Univ Sci Technol Beijing, 1991, 13(5): 410郭木星, 陳襄武, 肖清安, 等. 頂底復吹轉爐底吹CO2-N2的冶金特性. 北京科技大學學報, 1991, 13(5):410 [21] Qi J H, Zheng J G, Chen G Y, et al. Comparative study on refining of heavy rail steel by RH and VD. Chin J Eng, 2016, 38(Suppl 1): 125齊江華, 鄭建國, 陳光友, 等. 重軌鋼采用RH和VD精煉的對比研究. 工程科學學報, 2016, 38(增刊1): 125 [22] Zhao L H, Guo J L, Xu J L, et al. Complex bubble formation in the vacuum chamber and the up leg of the Rheinsahl-Heraeus. Chin J Eng, 2018, 40(4): 453趙立華, 郭建龍, 徐佳亮, 等. RH真空室內氣泡行為的研究. 工程科學學報, 2018, 40(4):453 [23] Bao Y P, Zhang C J, Wang M. Situation and prospect on investigation of ferroalloy reduction during steelmaking. Chin J Eng, 2018, 40(9): 1017包燕平, 張超杰, 王敏. 煉鋼過程中合金減量化研究現狀及展望. 工程科學學報, 2018, 40(9):1017 -