<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

CO2作為RH提升氣的冶金反應行為研究

魏光升 韓寶臣 朱榮

魏光升, 韓寶臣, 朱榮. CO2作為RH提升氣的冶金反應行為研究[J]. 工程科學學報, 2020, 42(2): 203-208. doi: 10.13374/j.issn2095-9389.2019.06.30.001
引用本文: 魏光升, 韓寶臣, 朱榮. CO2作為RH提升氣的冶金反應行為研究[J]. 工程科學學報, 2020, 42(2): 203-208. doi: 10.13374/j.issn2095-9389.2019.06.30.001
WEI Guang-sheng, HAN Bao-chen, ZHU Rong. Metallurgical reaction behavior of CO2 as RH lifting gas[J]. Chinese Journal of Engineering, 2020, 42(2): 203-208. doi: 10.13374/j.issn2095-9389.2019.06.30.001
Citation: WEI Guang-sheng, HAN Bao-chen, ZHU Rong. Metallurgical reaction behavior of CO2 as RH lifting gas[J]. Chinese Journal of Engineering, 2020, 42(2): 203-208. doi: 10.13374/j.issn2095-9389.2019.06.30.001

CO2作為RH提升氣的冶金反應行為研究

doi: 10.13374/j.issn2095-9389.2019.06.30.001
基金項目: 中國博士后科學基金面上資助項目(2019M660459);中央高校基本科研業務費資助項目(FRF-TP-19-031A1)
詳細信息
    通訊作者:

    E-mail:zhurong12001@126.com

  • 中圖分類號: TF743

Metallurgical reaction behavior of CO2 as RH lifting gas

More Information
  • 摘要: 鋼液真空循環脫氣法(RH)精煉能夠利用高真空和鋼液循環流動有效脫氣和去除夾雜物。同時,煉鋼環境下 CO2可與鋼液中[C]反應生成CO提高攪拌強度。因此,本文提出將CO2作為RH提升氣進行真空精煉。針對CO2在RH精煉過程的冶金反應行為特性,通過熱力學理論分析了極限真空條件下CO2脫碳的有利條件及限度,同時搭建了CO2作RH提升氣工業試驗平臺,通過工業試驗對比研究了CO2/Ar分別作提升氣時對鋼液精煉過程的影響。結果表明,若單純考慮CO2與碳反應,則當鋼液中[C]低于1.8×10?6,CO2仍然具有氧化碳元素的能力。然而,CO2對鋼液中碳鋁元素存在選擇性氧化,當鋁含量低于一定程度時,CO2主要參與脫碳反應;反之,CO2則會造成一定鋁損,因此若采用新工藝需考慮鋁合金加入時機以及加入量。此外,CO2用作RH提升氣可獲得與Ar效果相當甚至更優的脫氫效果,噴吹同等量CO2并未造成鋼液的大幅溫降,因此CO2完全有潛力作為RH提升氣,進而完成精煉。

     

  • 圖  1  不同溫度下CO2與元素反應標準吉布斯自由能[6-7]

    Figure  1.  Standard Gibbs free energy for reactions of elements with CO2 at different temperatures in steel[6-7]

    圖  2  鋼液平衡碳含量與CO分壓的關系曲線

    Figure  2.  Changes of carbon content at equilibrium as function of the partial pressure of CO in bubbles

    圖  3  工業試驗設備

    Figure  3.  Test equipment in industrial application

    圖  4  碳鋁元素的平均氧化量

    Figure  4.  Oxidation amount of carbon and aluminum in molten steel

    圖  5  脫氫率

    Figure  5.  Dehydrogenation ratio

    圖  6  鋼液平均溫降

    Figure  6.  Average temperature drop of molten steel

    表  1  鋼液進站成分(質量分數)

    Table  1.   Steel composition of ladle pulling in RH %

    鋼種CAlOSiMnPSNiCr
    A0.12800.04280.00400.20201.43140.01380.00410.02820.0400
    B0.13100.02100.00500.24361.29550.01470.00530.01860.0310
    下載: 導出CSV

    表  2  氣體控制策略及試驗方案

    Table  2.   Gas control strategy and test schemes

    方案鋼種提升氣流量(標態)/
    (m3·h?1
    處理時間/
    min
    真空度/
    Pa
    爐數
    1AAr100186710
    2ACO2100186710
    3BCO2100186710
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Meijer K, Denys M, Lasar J, et al. ULCOS: ultra-low CO2 steelmaking. Ironmaking Steelmaking, 2009, 36(4): 249 doi: 10.1179/174328109X439298
    [2] Quader M A, Ahmed S, Dawal S Z, et al. Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program. Renewable Sustainable Energy Rev, 2016, 55: 537 doi: 10.1016/j.rser.2015.10.101
    [3] Miwa T, Okuda H. CO2 ultimate reduction in steelmaking process by innovative technology for cool earth 50(COURSE50). J Jpn Inst Energy, 2010, 89: 28
    [4] Jin R J, Zhu R, Feng L X, et al. Experimental study of steelmaking with CO2 and O2 mixed blowing. J Univ Sci Technol Beijing, 2007, 29(Suppl 1): 77

    靳任杰, 朱榮, 馮立新, 等. 二氧化碳—氧氣混合噴吹煉鋼實驗研究. 北京科技大學學報, 2007, 29(增刊1): 77
    [5] Yin Z J, Zhu R, Yi C, et al. Fundamental research on controlling BOF dust by COMI steel-making process. Iron Steel, 2009, 44(10): 92 doi: 10.3321/j.issn:0449-749X.2009.10.021

    尹振江, 朱榮, 易操, 等. 應用COMI煉鋼工藝控制轉爐煙塵基礎研究. 鋼鐵, 2009, 44(10):92 doi: 10.3321/j.issn:0449-749X.2009.10.021
    [6] Yi C, Zhu R, Chen B Y, et al. Experimental research on reducing the dust of BOF in CO2 and O2 mixed blowing steelmaking process. ISIJ Int, 2009, 49(11): 1694 doi: 10.2355/isijinternational.49.1694
    [7] Zhu R, Bi X R, Lü M, et al. Research on steelmaking dust based on difference of Mn, Fe and Mo vapor pressure. Adv Mater Res, 2011, 284-286: 1216 doi: 10.4028/www.scientific.net/AMR.284-286.1216
    [8] Li Z, Zhu R, Ma G, et al. Laboratory investigation into reduction the production of dust in basic oxygen steelmaking. Ironmaking Steelmaking, 2017, 44(8): 601 doi: 10.1080/03019233.2016.1223906
    [9] Zhu R, Yi C, Chen B Y, et al. Inner circulation research of steelmaking dust by COMI steelmaking process. Energy Metall Ind, 2010, 29(1): 48 doi: 10.3969/j.issn.1001-1617.2010.01.017

    朱榮, 易操, 陳伯瑜, 等. 應用COMI煉鋼工藝控制煉鋼煙塵內循環的研究. 冶金能源, 2010, 29(1):48 doi: 10.3969/j.issn.1001-1617.2010.01.017
    [10] Bi X R, Liu R Z, Zhu R, et al. Research on mechanism of dust generation in converter. Ind Heat, 2010, 39(6): 13 doi: 10.3969/j.issn.1002-1639.2010.06.004

    畢秀榮, 劉潤藻, 朱榮, 等. 轉爐煉鋼煙塵形成機理研究. 工業加熱, 2010, 39(6):13 doi: 10.3969/j.issn.1002-1639.2010.06.004
    [11] Zhang W, Li Z Z, Zhu R, et al. Experimental study of CO2 blowing in steelmaking process. Ind Heat, 2015, 44(2): 41 doi: 10.3969/j.issn.1002-1639.2015.02.012

    張偉, 李智崢, 朱榮, 等. 煉鋼過程噴吹CO2的實驗研究. 工業加熱, 2015, 44(2):41 doi: 10.3969/j.issn.1002-1639.2015.02.012
    [12] Lü M, Zhu R, Wei X Y, et al. Research on top and bottom mixed blowing CO2 in converter steelmaking process. Steel Res Int, 2012, 83(1): 11 doi: 10.1002/srin.201100166
    [13] Lü M, Zhu R, Bi X R, et al. Application research of carbon dioxide in BOF steelmaking process. J Univ Sci Technol Beijing, 2011, 33(Suppl 1): 126

    呂明, 朱榮, 畢秀榮, 等. 二氧化碳在轉爐煉鋼中的應用研究. 北京科技大學學報, 2011, 33(增刊1): 126
    [14] Mannion F J, Fruehan R J. Decarburization kinetics of liquid Fe-Csat alloys by CO2. Metall Mater Trans B, 1989, 20(6): 853 doi: 10.1007/BF02670190
    [15] Gu Y L, Wang H J, Zhu R, et al. Study on experiment and mechanism of bottom blowing CO2 during the LF refining process. Steel Res Int, 2014, 85(4): 589 doi: 10.1002/srin.201300106
    [16] Dong K, Zhu R, Liu R Z, et al. Influence of bottom blowing CO2 in LF on molten steel quality and erosion of ventilated bricks. J Univ Sci Technol Beijing, 2014, 36(Suppl 1): 226

    董凱, 朱榮, 劉潤藻, 等. LF爐底吹CO2氣體對鋼液質量影響及透氣磚侵蝕的研究. 北京科技大學學報, 2014, 36(增刊1): 226
    [17] Han B C, Zhu R, Zhu Y Q, et al. Research on Selective Oxidation of Carbon and Aluminum with Introduction of CO2 in RH Refining of Low-Carbon Steel Process. Metall Mater Trans B, 2018, 49(6): 3544 doi: 10.1007/s11663-018-1417-2
    [18] Han B C, Wei G S, Zhu R, et al. Utilization of carbon dioxide injection in BOF–RH steelmaking process. J CO2 Utilization, 2019, 34: 53 doi: 10.1016/j.jcou.2019.05.038
    [19] Lü M, Zhu R, Yang L Z. High Efficiency Dephosphorization by Mixed Injection during Steelmaking Process. Steel Res Int, 2019, 90(3): 1800454 doi: 10.1002/srin.201800454
    [20] Guo M X, Chen X W, Xiao Q A, et al. Metallurgical character of bottom blowing CO2-N2 gas in combined-blown converter. J Univ Sci Technol Beijing, 1991, 13(5): 410

    郭木星, 陳襄武, 肖清安, 等. 頂底復吹轉爐底吹CO2-N2的冶金特性. 北京科技大學學報, 1991, 13(5):410
    [21] Qi J H, Zheng J G, Chen G Y, et al. Comparative study on refining of heavy rail steel by RH and VD. Chin J Eng, 2016, 38(Suppl 1): 125

    齊江華, 鄭建國, 陳光友, 等. 重軌鋼采用RH和VD精煉的對比研究. 工程科學學報, 2016, 38(增刊1): 125
    [22] Zhao L H, Guo J L, Xu J L, et al. Complex bubble formation in the vacuum chamber and the up leg of the Rheinsahl-Heraeus. Chin J Eng, 2018, 40(4): 453

    趙立華, 郭建龍, 徐佳亮, 等. RH真空室內氣泡行為的研究. 工程科學學報, 2018, 40(4):453
    [23] Bao Y P, Zhang C J, Wang M. Situation and prospect on investigation of ferroalloy reduction during steelmaking. Chin J Eng, 2018, 40(9): 1017

    包燕平, 張超杰, 王敏. 煉鋼過程中合金減量化研究現狀及展望. 工程科學學報, 2018, 40(9):1017
  • 加載中
圖(6) / 表(2)
計量
  • 文章訪問數:  1317
  • HTML全文瀏覽量:  959
  • PDF下載量:  60
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-06-30
  • 刊出日期:  2020-02-01

目錄

    /

    返回文章
    返回