<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于RA與AF值的聲發射指標在隧道監測中的可行性

吳順川 甘一雄 任義 鄭立夫

吳順川, 甘一雄, 任義, 鄭立夫. 基于RA與AF值的聲發射指標在隧道監測中的可行性[J]. 工程科學學報, 2020, 42(6): 723-730. doi: 10.13374/j.issn2095-9389.2019.06.28.001
引用本文: 吳順川, 甘一雄, 任義, 鄭立夫. 基于RA與AF值的聲發射指標在隧道監測中的可行性[J]. 工程科學學報, 2020, 42(6): 723-730. doi: 10.13374/j.issn2095-9389.2019.06.28.001
WU Shun-chuan, GAN Yi-xiong, REN Yi, ZHENG Li-fu. Feasibility research of AE monitoring index in tunnel based on RA and AF[J]. Chinese Journal of Engineering, 2020, 42(6): 723-730. doi: 10.13374/j.issn2095-9389.2019.06.28.001
Citation: WU Shun-chuan, GAN Yi-xiong, REN Yi, ZHENG Li-fu. Feasibility research of AE monitoring index in tunnel based on RA and AF[J]. Chinese Journal of Engineering, 2020, 42(6): 723-730. doi: 10.13374/j.issn2095-9389.2019.06.28.001

基于RA與AF值的聲發射指標在隧道監測中的可行性

doi: 10.13374/j.issn2095-9389.2019.06.28.001
詳細信息
    通訊作者:

    E-mail:b20140014@xs.ustb.edu.cn

  • 中圖分類號: TU94

Feasibility research of AE monitoring index in tunnel based on RA and AF

More Information
  • 摘要: 基于華鎣山隧道掘進爆破過程中的聲發射監測結果,對比了上升時間/振幅比值(RA)與平均頻率(AF)在不同傳播距離下的分布規律,結果表明,隨傳感器與震源間距離增加,RA最大值增加,AF的分布范圍基本不變。為驗證基于RA與AF值描述巖體破裂情況的有效性,研究了RA/AF比值r在破裂過程中的變化規律以及r的變異系數的發展規律,并與常用的參數指標絕對能量、b值等參數進行對比驗證。本文提出了3種變異系數(CV)計算方法,對比計算結果并探討了各方法的適用條件。由計算結果可知,r值變異系數能夠較好地描述巖體中的破裂發展過程,其中CV1計算方法適用于聲發射信號較離散的情況,而CV3的計算方法更適用于存在連續聲發射信號的圍巖監測。

     

  • 圖  1  預留傳感器安裝孔。(a)拱頂安裝孔;(b)拱腰安裝孔

    Figure  1.  Reserved cave for sensor attaching: (a) reserved cave on the top; (b) reserved cave on the wall

    圖  2  同次爆破不同距離下聲發射RA與AF值分布。(a)破裂分類判據;(b)距離6 m;(c)距離12 m;(d)距離18 m

    Figure  2.  Distribution of RA and AF of AE signals at different distances from the source during a certain blasting: (a) criteria for fracture classification; (b) distance of 6 m; (c) distance of 12 m; (d) distance of 18 m

    圖  3  同次爆破不同距離下聲發射參數隨時間的變化。(a)絕對能量與b值;(b)距離6 m;(c)距離12 m;(d)距離18 m

    Figure  3.  Evolution of AE parameters and indices at different distances from the source during a certain blasting: (a) absolute energy and b value; (b) distance of 6 m; (c) distance of 12 m; (d) distance of 18 m

    圖  4  不同距離下r值變異系數隨時間的變化

    Figure  4.  Time history of CV of r at different distances

    圖  5  掌子面爆破不同參數指標統計對比結果。(a)絕對能量與b值;(b)CV1統計結果;(c)CV2統計結果;(d)CV3統計結果

    Figure  5.  Time history of AE parameters and indices during driving blasting of tunnel face: (a) absolute energy and b value; (b) time history of CV1; (c) time history of CV2; (d) time history of CV3

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Feng X T, Young R P, Reyes-Montes J M, et al. ISRM suggested method for in situ acoustic emission monitoring of the fracturing process in rock masses. Rock Mech Rock Eng, 2019, 52(5): 1395 doi: 10.1007/s00603-019-01774-z
    [2] Young R P, Collins D S. Seismic studies of rock fracture at the Underground Research Laboratory, Canada. Int J Rock Mech Min Sci, 2001, 38(6): 787 doi: 10.1016/S1365-1609(01)00043-0
    [3] Chen B R, Feng X T, Xiao Y X, et al. Acoustic emission test on damage evolution of surrounding rock in deep-buried tunnel during TBM excavation. Chin J Rock Mech Eng, 2010, 29(8): 1562

    陳炳瑞, 馮夏庭, 肖亞勛, 等. 深埋隧洞TBM施工過程圍巖損傷演化聲發射試驗. 巖石力學與工程學報, 2010, 29(8):1562
    [4] Cheng W W, Wang W Y, Huang S Q, et al. Acoustic emission monitoring of rockbursts during TBM-excavated headrace tunneling at Jinping II hydropower station. J Rock Mech Geotech Eng, 2013, 5(6): 486 doi: 10.1016/j.jrmge.2011.09.001
    [5] Hirata A, Ishiyama K, Taga N, et al. AE monitoring and rock stress measurement in rock burst site // 7th ISRM Congress. Aachen, 1991: ISRM-7CONGRESS-1991-101
    [6] Aydan O, Tano H, Ideura H, et al. Monitoring of the dynamic response of the surrounding rock mass at the excavation face of Tarutoge Tunnel, Japan // ISRM International Symposium - EUROCK 2016. ürgüp, 2016: ISRM-EUROCK-2016-204
    [7] Zhao Y C, Yang T H, Xiao F K, et al. Analysis of attenuation characteristics of elastic wave in medium-grained sandstone. J Vib Meas Diagn, 2018, 38(2): 285

    趙永川, 楊天鴻, 肖福坤, 等. 彈性波在中粒砂巖內傳播衰減特性分析. 振動、測試與診斷, 2018, 38(2):285
    [8] Aggelis D G. Classification of cracking mode in concrete by acoustic emission parameters. Mech Res Commun, 2011, 38(3): 153 doi: 10.1016/j.mechrescom.2011.03.007
    [9] He M C, Zhao F, Du S, et al. Rockburst characteristics based on experimental tests under different unloading rates. Rock Soil Mech, 2014, 35(10): 2737

    何滿潮, 趙菲, 杜帥, 等. 不同卸載速率下巖爆破壞特征試驗分析. 巖土力學, 2014, 35(10):2737
    [10] Yan Z F. Research on Recognition Method of Granite Tensile-Shear Fracture Based on Acoustic Emission[Dissertation]. Nanning: Guangxi University, 2018

    閆召富. 基于聲發射的花崗巖拉剪破裂識別方法研究[學位論文]. 南寧: 廣西大學, 2018
    [11] Kourkoulis S K, Pasiou E D, Dakanali I, et al. Mechanical response of notched marble beams under bending versus acoustic emissions and electric activity. J Theor Appl Mech, 2018, 56(2): 523
    [12] Kourkoulis S K, Pasiou E D, Dakanali I, et al. Notched marble plates under direct tension: mechanical response and fracture. Constr Build Mater, 2018, 167: 426 doi: 10.1016/j.conbuildmat.2018.02.024
    [13] Nejati H R, Nazerigivi A, Sayadi A R. Physical and mechanical phenomena associated with rock failure in Brazilian Disc Specimens. Int J Geol Environ Eng, 2018, 12(1): 35
    [14] Xiao Y X, Feng X T, Hudson J A, et al. ISRM suggested method for in situ microseismic monitoring of the fracturing process in rock masses. Rock Mech Rock Eng, 2016, 49(1): 343 doi: 10.1007/s00603-015-0859-y
    [15] Sagasta F, Zitto M E, Piotrkowski R, et al. Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures subjected to seismic loadings. Mechan Syst Signal Process, 2018, 102: 262 doi: 10.1016/j.ymssp.2017.09.022
    [16] Carpinteri A, Lacidogna G, Puzzi S. From criticality to final collapse: Evolution of the "b-value" from 1.5 to 1.0. Chaos Solitons Fractals, 2009, 41(2): 843 doi: 10.1016/j.chaos.2008.04.010
  • 加載中
圖(5)
計量
  • 文章訪問數:  2185
  • HTML全文瀏覽量:  2304
  • PDF下載量:  136
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-06-28
  • 刊出日期:  2020-06-01

目錄

    /

    返回文章
    返回