<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

含有上貝氏體的ER8車輪鋼的裂紋擴展行為

李遷 趙愛民 郭軍 裴偉 劉素鵬

李遷, 趙愛民, 郭軍, 裴偉, 劉素鵬. 含有上貝氏體的ER8車輪鋼的裂紋擴展行為[J]. 工程科學學報, 2020, 42(6): 747-754. doi: 10.13374/j.issn2095-9389.2019.06.27.002
引用本文: 李遷, 趙愛民, 郭軍, 裴偉, 劉素鵬. 含有上貝氏體的ER8車輪鋼的裂紋擴展行為[J]. 工程科學學報, 2020, 42(6): 747-754. doi: 10.13374/j.issn2095-9389.2019.06.27.002
LI Qian, ZHAO Ai-min, GUO Jun, PEI Wei, LIU Su-peng. Crack propagation behavior of ER8 wheel steel containing upper bainite[J]. Chinese Journal of Engineering, 2020, 42(6): 747-754. doi: 10.13374/j.issn2095-9389.2019.06.27.002
Citation: LI Qian, ZHAO Ai-min, GUO Jun, PEI Wei, LIU Su-peng. Crack propagation behavior of ER8 wheel steel containing upper bainite[J]. Chinese Journal of Engineering, 2020, 42(6): 747-754. doi: 10.13374/j.issn2095-9389.2019.06.27.002

含有上貝氏體的ER8車輪鋼的裂紋擴展行為

doi: 10.13374/j.issn2095-9389.2019.06.27.002
詳細信息
    通訊作者:

    E-mail:zhaoaimin@ustb.edu.cn

  • 中圖分類號: TG142.1

Crack propagation behavior of ER8 wheel steel containing upper bainite

More Information
  • 摘要: 研究不同含量的上貝氏體對ER8車輪鋼裂紋擴展行為的影響。利用激光共聚焦顯微鏡(LSCM)和掃描電鏡(SEM)對ER8車輪鋼的顯微組織和裂紋擴展路徑進行了研究。實驗結果表明:ER8車輪鋼中的組織除了有鐵素體和珠光體,還存在上貝氏體;裂紋穿過上貝氏體和珠光體擴展,最終停止在珠光體區域;與珠光體組織相比,裂紋在上貝氏體中的擴展路徑更曲折。利用掃描電鏡(SEM)對ER8車輪鋼的裂紋擴展變形進行原位觀察。實驗結果表明:含有80%上貝氏體的ER8車輪鋼拉伸時,組織變形過程主要以鐵素體和上貝氏體為主,裂紋在上貝氏體和珠光體中連續擴展,伴隨著珠光體的變形;而含有50%上貝氏體的ER8車輪鋼拉伸時,組織變形過程主要以鐵素體和珠光體為主,并且上貝氏體對鐵素體和珠光體的變形起到阻礙作用。上貝氏體能夠有效地阻止裂紋擴展,在偏轉裂紋路徑和延緩裂紋擴展方面起著重要作用;并且對鐵素體和珠光體的變形起到阻礙作用。

     

  • 圖  1  ER8車輪鋼輪輞踏面區域取樣示意圖(單位:mm)

    Figure  1.  Schematic diagram of sampling area of steel rim tread of ER8 wheel steel (unit: mm)

    圖  2  車輪鋼拉伸實驗的強度數據

    Figure  2.  Tensile test strength data of wheel steel

    圖  3  ER8車輪鋼微觀組織圖. (a)1#光鏡組織;(b)2#光鏡組織;(c)1#掃描組織;(d)2#掃描組織;(e)1#透射組織;(f)2#透射組織

    Figure  3.  Microstructure of ER8 wheel steel: (a) 1# microstructure; (b) 2# microstructure; (c) 1# scanning structure; (d) 2# scanning structure; (e) 1# transmission structure; (f) 2# transmission structure

    圖  4  ER8車輪鋼輪輞踏面的裂紋形成與擴展顯微圖. (a)1#車輪鋼表面剝離坑;(b)1#車輪鋼裂紋擴展;(c,d)2#車輪鋼裂紋擴展

    Figure  4.  Micrograph of crack formation and propagation on rim tread of ER8 wheel steel: (a) 1# wheel steel surface peel pit; (b) crack growth of 1# wheel steel; (c, d) crack growth of 2# wheel steel

    圖  5  ER8車輪鋼裂紋擴展示意圖. (a)裂紋萌生處;(b~d)裂紋在上貝氏體中擴展;(e~f)裂紋在珠光體中擴展(這些顯微照片不是在車輪鋼的同一區域拍攝)

    Figure  5.  ER8 wheel steel crack propagation diagram: (a) crack initiation; (b–d) crack propagation in upper bainite; (e–f) crack propagation in pearlite (Note that these micrographs were not taken at the same region of the wheel steels)

    圖  6  1#車輪鋼原位拉伸掃描組織圖. (a)變形初期形成的主裂紋;(b)圖(a)的局部放大;(c)拉力增大,主裂紋擴展;(d)主裂紋進一步擴展;(e)拉伸斷裂后,主裂紋旁邊組織變形;(f)拉伸斷裂后,主裂紋附近的組織變形

    Figure  6.  In situ tensile scanning microstructure of 1# wheel steel: (a) main cracks formed in the early deformation stage; (b) partial enlargement of Fig.(a); (c) image showing main crack growth with tension increasing; (d) further expansion of the main crack; (e) microstructure adjacent to the main crack after tensile fracture; (f) microstructure around the main crack after tensile fracture

    圖  7  2#車輪鋼原位拉伸掃描組織圖. (a)變形初期形成的主裂紋;(b)圖(a)的局部放大;(c)拉力增大,主裂紋穿過上貝氏體擴展;(d~f)拉伸斷裂后,主裂紋附近的組織變形

    Figure  7.  In situ tensile scanning microstructure of 2# wheel steel: (a) main cracks formed in the early deformation stage; (b) partial enlargement of Fig.(a); (c) image showing main crack growth with tension increasing; (d–f) deformation of the microstructure near the main crack after tensile fracture

    表  1  ER8車輪鋼化學成分(質量分數)

    Table  1.   ER8 wheel steel chemical composition %

    SampleCSiMnSPCrMoNiVFe
    1#0.500.340.740.0020.0070.190.030.170.02Bal.
    2#0.490.350.740.0010.0070.190.030.150.04Bal.
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Duan G H, Zhang P, Li J X, et al. In situ studies on the effect of ferrite and pearlite contents on the deformation process. J Univ Sci Technol Beijing, 2014, 36(8): 1032

    段桂花, 張平, 李金許, 等. 鐵素體和珠光體含量影響變形過程的原位研究. 北京科技大學學報, 2014, 36(8):1032
    [2] Zeng D F, Lu L T, Gong Y H, et al. Optimization of strength and toughness of railway wheel steel by alloy design. Mater Des, 2016, 92: 998 doi: 10.1016/j.matdes.2015.12.096
    [3] Liu Z X, Gu H C. The in-situ fatigue crack observation of wheel steels. Prakt Metallogr, 2002, 39(4): 21
    [4] Xie Y J, Hu X Z, Wang X H, et al. A theoretical note on mode-I crack branching and kinking. Eng Fract Mech, 2011, 78(6): 919 doi: 10.1016/j.engfracmech.2011.01.023
    [5] Hamada S, Sasaki D, Ueda M, et al. Fatigue limit evaluation considering crack initiation for lamellar pearlitic steel. Procedia Eng, 2011, 10: 1467 doi: 10.1016/j.proeng.2011.04.245
    [6] Mutoh Y, Korda A A, Miyashita Y, et al. Stress shielding and fatigue crack growth resistance in ferritic–pearlitic steel. Mater Sci Eng A, 2007, 468-470: 114 doi: 10.1016/j.msea.2006.07.171
    [7] Zhang W, Liu Y M. Investigation of incremental fatigue crack growth mechanisms using in situ SEM testing. Int J Fatigue, 2012, 42: 14 doi: 10.1016/j.ijfatigue.2011.03.004
    [8] Toribio J, González B, Matos J C. Micro-and macro-analysis of the fatigue crack growth in pearlitic steels. Ciênc Tecnol Mater, 2008, 20(1-2): 68
    [9] Maya-Johnson S, Ramirez A J, Toro A. Fatigue crack growth rate of two pearlitic rail steels. Eng Fract Mech, 2015, 138: 63 doi: 10.1016/j.engfracmech.2015.03.023
    [10] Guan M F, Yu H. Fatigue crack growth behaviors in hot-rolled low carbon steels: a comparison between ferrite–pearlite and ferrite–bainite microstructures. Mater Sci Eng A, 2013, 559: 875 doi: 10.1016/j.msea.2012.09.036
    [11] Chen L, Guo F X, Wang H J, et al. Effect of microstructure on fatigue crack propagation behavior of U20Mn bainite steel. Trans Mater Heat Treat, 2018, 39(2): 119

    陳林, 郭飛翔, 王慧軍, 等. 微觀組織對U20Mn貝氏體鋼疲勞裂紋擴展行為的影響. 材料熱處理學報, 2018, 39(2):119
    [12] Sun Z Y, Zhou H, Cheng X H. Impact toughness of low-carbon bainite steel with initial cracks. J Shanghai Jiaotong Univ, 2016, 50(7): 1000

    孫志永, 周華, 程先華. 含有初始裂紋的低碳貝氏體鋼的沖擊韌性. 上海交通大學學報, 2016, 50(7):1000
    [13] Teshima T, Kosaka M, Ushioda K, et al. Local cementite cracking induced by heterogeneous plastic deformation in lamellar pearlite. Mater Sci Eng A, 2017, 679: 223 doi: 10.1016/j.msea.2016.10.018
    [14] Masoumi M, Sinatora A, Goldenstein H. Role of microstructure and crystallographic orientation in fatigue crack failure analysis of a heavy haul railway rail. Eng Fail Anal, 2019, 96: 320 doi: 10.1016/j.engfailanal.2018.10.022
    [15] Korda A A, Mutoh Y, Miyashita Y, et al. In situ observation of fatigue crack retardation in banded ferrite–pearlite microstructure due to crack branching. Scripta Mater, 2006, 54(11): 1835 doi: 10.1016/j.scriptamat.2006.02.025
    [16] Eden H C, Garnham J E, Davis C L. Influential microstructural changes on rolling contact fatigue crack initiation in pearlitic rail steels. Mater Sci Technol, 2005, 21(6): 623 doi: 10.1179/174328405X43207
    [17] Garnham J E, Davis C L. The role of deformed rail microstructure on rolling contact fatigue initiation. Wear, 2008, 265(9-10): 1363 doi: 10.1016/j.wear.2008.02.042
    [18] Tomota Y, Watanabe O, Kanie A, et al. Effect of carbon concentration on tensile behaviour of pearlitic steels. Mater Sci Technol, 2003, 19(12): 1715 doi: 10.1179/026708303225008310
    [19] Pardoen T, Dumont D, Deschamps A, et al. Grain boundary versus transgranular ductile failure. J Mech Phys Solids, 2003, 51(4): 637 doi: 10.1016/S0022-5096(02)00102-3
    [20] Wang J Y, Sun C X, Zhang J. Wheel-rail contact mechanics analysis of internal cracks. J Dalian Jiaotong Univ, 2017, 38(6): 50

    汪金余, 孫傳喜, 張軍. 內部存在裂紋的輪軌接觸力學分析. 大連交通大學學報, 2017, 38(6):50
    [21] Maya-Johnson S, Santa J F, Toro A. Dry and lubricated wear of rail steel under rolling contact fatigue-Wear mechanisms and crack growth. Wear, 2017, 380-381: 240 doi: 10.1016/j.wear.2017.03.025
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數:  1768
  • HTML全文瀏覽量:  1277
  • PDF下載量:  78
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-06-27
  • 刊出日期:  2020-06-01

目錄

    /

    返回文章
    返回