<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋁合金管材6061自由彎曲成形工藝仿真及優化

李玉森 岳振明 妥之彧 閔鑫瑞 高軍

李玉森, 岳振明, 妥之彧, 閔鑫瑞, 高軍. 鋁合金管材6061自由彎曲成形工藝仿真及優化[J]. 工程科學學報, 2020, 42(6): 769-777. doi: 10.13374/j.issn2095-9389.2019.06.21.001
引用本文: 李玉森, 岳振明, 妥之彧, 閔鑫瑞, 高軍. 鋁合金管材6061自由彎曲成形工藝仿真及優化[J]. 工程科學學報, 2020, 42(6): 769-777. doi: 10.13374/j.issn2095-9389.2019.06.21.001
LI Yu-sen, YUE Zhen-ming, TUO Zhi-yu, MIN Xin-rui, GAO Jun. Simulation and optimization of the free bending process of aluminum alloy 6061 pipe[J]. Chinese Journal of Engineering, 2020, 42(6): 769-777. doi: 10.13374/j.issn2095-9389.2019.06.21.001
Citation: LI Yu-sen, YUE Zhen-ming, TUO Zhi-yu, MIN Xin-rui, GAO Jun. Simulation and optimization of the free bending process of aluminum alloy 6061 pipe[J]. Chinese Journal of Engineering, 2020, 42(6): 769-777. doi: 10.13374/j.issn2095-9389.2019.06.21.001

鋁合金管材6061自由彎曲成形工藝仿真及優化

doi: 10.13374/j.issn2095-9389.2019.06.21.001
基金項目: 國家自然科學基金資助項目(51605257,51975327);國家博士后科學基金資助項目(2018M642652);山東大學青年學者未來計劃資助項目(2017WHWLJH06)
詳細信息
    通訊作者:

    E-mail:yuezhenming@sdu.edu.cn

  • 中圖分類號: TG386.1

Simulation and optimization of the free bending process of aluminum alloy 6061 pipe

More Information
  • 摘要: 金屬管材是工業領域中結構承重、輸送氣體和液體的重要部件。自由彎管成形技術有助于實現管件生產的高精度、高性能、高效率和數字化,其精度控制理論和成形技術的研究具有重要的工業應用價值。本文選擇直徑 30 mm 壁厚 2.0 mm 的鋁合金管材6061為仿真優化對象,通過相關基礎實驗獲得材料的基本力學數據,用于仿真模型參數的表征。同時,結合管材壓彎實驗驗證本構模型成形預測的有效性。在完成仿真模型表征和驗證的基礎上,對鋁合金管材的自由彎曲成形過程進行仿真模擬,分析對比了影響自由彎曲成形的各工藝參數,確定了該工況下最優的移動模與管材間隙大小、摩擦系數和進給速度等。該研究有助于優化管材空間自由彎曲成形工藝,具有一定的工業應用價值。

     

  • 圖  1  彎管工藝外對比。(a)傳統彎管;(b)自由彎管

    Figure  1.  Comparison of tube bending processes: (a) traditional technique; (b) free bending

    圖  2  鋁合金管材6061拉伸實驗及壓彎實驗。(a)軸向拉伸;(b)環向拉伸;(c)壓彎

    Figure  2.  Tensile test and press bending test of aluminum alloy 6061 pipe: (a) axial tensile test; (b) circumferential tensile test; (c) press bending test

    圖  3  實驗與仿真結果對比。(a)軸向拉伸;(b)環向拉伸;(c)壓彎

    Figure  3.  Comparison between the simulation and experimental results: (a) axial tensile test; (b) circumferential tensile test; (c) press bending test

    圖  4  自由彎曲成形有限元仿真幾何模型

    Figure  4.  Finite element geometrical mode of free bending forming

    圖  5  自由彎曲成形后的應力、應變及壁厚云圖

    Figure  5.  Stress, strain, and thickness nephogram of free bending forming

    圖  6  沿管材進給長度的應力應變及壁厚變化曲線。(a)應力;(b)應變;(c)壁厚

    Figure  6.  Stress, strain and thickness curve of bending along the feed length of pipe: (a) stress; (b) strain; (c) thickness

    圖  7  管材截面橢圓度

    Figure  7.  Ovality of pipe section

    圖  8  不同移動模偏移量下的成形結果

    Figure  8.  Forming results with different offsets of mobile die

    圖  9  不同間隙的成形結果。(a)應變云圖;(b)壁厚變化曲線;(c)截面橢圓度變化曲線;(d)推進力變化曲線

    Figure  9.  Results of bending with different clearance: (a) strain contour; (b) thickness curve along the feed length of pipe; (c) ovality curve along the feed length of pipe; (d) pushing force curve

    圖  10  壁厚、橢圓度、殘余應力和應變變化曲線。(a)平均壁厚減薄率和截面橢圓度;(b)殘余應力和應變

    Figure  10.  Thickness reduction, ovality, residual stress and strain curve of bending: (a) thickness reduction and ovality; (b) residual stress and strain

    圖  11  不同摩擦力下成形結果。(a)成形云圖;(b)平均壁厚減薄率和截面橢圓度變化;(c)殘余應力和推進力變化

    Figure  11.  Results of bending with different frictional coefficients: (a) forming nephogram; (b) average thickness reduction and ovality; (c) residual stress and pushing force

    圖  12  管材材料流動方向及摩擦力方向示意圖

    Figure  12.  Direction of material flow and frictional force

    圖  13  不同速度下應力、推進力、壁厚和橢圓度變化曲線

    Figure  13.  Stress, pushing force, thickness, and ovality curve with different velocities

    圖  14  5和50 mm·s?1進給速度的成形結果

    Figure  14.  Forming result of bending with different velocities

    圖  15  不同進給速度下的成形極限

    Figure  15.  Forming limit of bending with different velocities

    表  1  鋁合金管材6061模型參數

    Table  1.   Model parameters of aluminum alloy 6061 pipe

    Density/(g·cm?3)Young's modulus /MPaYield stress /MPaQ/MPabC/MPaa
    2.7666788.2297.98720.80214.537720.80214.537
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Li H, Shi K P, Yang H, et al. Springback law of thin-walled 6061-T4 Al-alloy tube upon bending. Trans Nonferrous Met Soc China, 2012, 22(Suppl 2): s357
    [2] Zhang X L, Yang H, Li H, et al. Warm bending mechanism of extrados and intrados of large diameter thin-walled CP-Ti tubes. Trans Nonferrous Met Soc China, 2014, 24(10): 3257 doi: 10.1016/S1003-6326(14)63465-8
    [3] Zhang J R, Wang Y J, Wang J B, et al. Analysis on springback of big diameter thin-wall tube bending forming. Aeron Manuf Technol, 2009(19): 91 doi: 10.3969/j.issn.1671-833X.2009.19.019

    張盡染, 王永軍, 王俊彪, 等. 大直徑薄壁導管彎曲回彈解析計算. 航空制造技術, 2009(19):91 doi: 10.3969/j.issn.1671-833X.2009.19.019
    [4] Guo X Z, Ma Y N, Xu Y, et al. State-of-the-Arts in 3D free bending technology and the future application in aviation manufacture. Aeron Manuf Technol, 2016(23-24): 16

    郭訓忠, 馬燕楠, 徐勇, 等. 三維自由彎曲成形技術及在航空制造業中的潛在應用. 航空制造技術, 2016(23-24):16
    [5] Lu S Q, Fang J, Wang K L. Plastic deformation analysis and forming quality prediction of tube NC bending. Chin J Aeron, 2016, 29(5): 1436 doi: 10.1016/j.cja.2016.03.009
    [6] Zhan M, Wang Y, Yang H, et al. An analytic model for tube bending springback considering different parameter variations of Ti-alloy tubes. J Mater Process Technol, 2016, 236: 123 doi: 10.1016/j.jmatprotec.2016.05.008
    [7] Gantner P, Bauer H, Harrison D K, et al. FEA simulation of bending processes with LS-DYNA//Proceedings of the 8th International LS-Dyna Users Conference. Troy, 2004: 33
    [8] Gantner P, Bauer H, Harrison D K, et al. Free-bending—a new bending technique in the hydroforming process chain. J Mater Process Technol, 2005, 167(2-3): 302 doi: 10.1016/j.jmatprotec.2005.05.052
    [9] Plettke R, Vatter P H, Vipavc D. Basics of process design for 3D freeform bending. Steel Res Int, 2012, 14: 307
    [10] Goto H, Tanaka Y, Ichiryu K. 3D tube forming and applications of a new bending machine with hydraulic parallel kinematics. Int J Autom Technol, 2012, 6(4): 509 doi: 10.20965/ijat.2012.p0509
    [11] Kawasumi S, Takeda Y, Matsuura D. Precise pipe-bending by 3-RPSR parallel mechanism considering springback and clearances at dies. T Jpn Soc Mech Eng, 2014, 80(820): 343
    [12] Li P F, Wang L Y, Li M Z. Flexible-bending of profiles with asymmetric cross-section and elimination of side bending defect. Int J Adv Manuf Technol, 2016, 87(9-12): 2853 doi: 10.1007/s00170-016-8673-6
    [13] Li P F, Wang L Y, Li M Z. Flexible-bending of profiles and tubes of continuous varying radii. Intl J Adv Manuf Technol, 2017, 88(5-8): 1669 doi: 10.1007/s00170-016-8885-9
    [14] Yang H, Li H, Zhang Z Y, et al. Advances and trends on tube bending forming technologies. Chin J Aeron, 2012, 25(1): 1 doi: 10.1016/S1000-9361(11)60356-7
    [15] Wu J J, Zhang Z K, Shang Q, et al. A method for investigating the springback behavior of 3D tubes. Int J Mech Sci, 2017, 131-132: 191 doi: 10.1016/j.ijmecsci.2017.06.047
    [16] Guo X Z, Ma Y N, Chen W L, et al. Simulation and experimental research of the free bending process of a spatial tube. J Mater Process Technol, 2018, 255: 137 doi: 10.1016/j.jmatprotec.2017.11.062
    [17] Yue Z M. Ductile Damage Prediction in Sheet Metal Forming Processes[Dissertation]. Troyes: University of Technology of Troyes, 2014
    [18] Yue Z M, Badreddine H, Saanouni K, et al. On the distortion of yield surface under complex loading paths in sheet metal forming//Proceedings of the IDDRG 2014: Innovations for the Sheet Metal Industry. Paris, 2014: 246
  • 加載中
圖(15) / 表(1)
計量
  • 文章訪問數:  1461
  • HTML全文瀏覽量:  926
  • PDF下載量:  48
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-06-21
  • 刊出日期:  2020-06-01

目錄

    /

    返回文章
    返回