Simulation and optimization of the free bending process of aluminum alloy 6061 pipe
-
摘要: 金屬管材是工業領域中結構承重、輸送氣體和液體的重要部件。自由彎管成形技術有助于實現管件生產的高精度、高性能、高效率和數字化,其精度控制理論和成形技術的研究具有重要的工業應用價值。本文選擇直徑 30 mm 壁厚 2.0 mm 的鋁合金管材6061為仿真優化對象,通過相關基礎實驗獲得材料的基本力學數據,用于仿真模型參數的表征。同時,結合管材壓彎實驗驗證本構模型成形預測的有效性。在完成仿真模型表征和驗證的基礎上,對鋁合金管材的自由彎曲成形過程進行仿真模擬,分析對比了影響自由彎曲成形的各工藝參數,確定了該工況下最優的移動模與管材間隙大小、摩擦系數和進給速度等。該研究有助于優化管材空間自由彎曲成形工藝,具有一定的工業應用價值。Abstract: Metal pipes are the important components of structural load-bearing and conveying gas or liquid in the industrial field. However, the final forming profile obtained with the traditional bending process highly depends on the forming mold; the forming profile is simple, but the mold cost is relatively expensive. Thus, it is difficult for wide promotion on the bent pipe with a complex profile, especially for small batch production. The free bending process as a method of solving this problem is attracting a lot of attention. This process can achieve precision forming of the pipe without a forming mold. The pipe can be bent into different radii by adjusting the relative positions of the fixed die and mobile die. This process not only reduces the manufacturing cost but also improves the forming quality. The development of the free bending process will help to achieve high precision, high performance, high efficiency, and digitization of the industrial production of the metal pipes. In this study, an aluminum alloy 6061 pipe with a diameter of 30 mm and wall thickness of 2.0 mm was chosen. Its mechanical parameters were obtained by a tensile test of the axial and circumferential specimens of the pipe, and the obtained parameters were used for the parameter characterization of the chosen constitutive model. Meanwhile, a press bending test was carried out to validate the chosen model. Afterward, the pipe space free bending process was simulated by the finite element method, and the results were analyzed. Finally, the optimal values of the process parameters, including the shape of the mobile die, the size of the clearance of the mobile die and pipe, the frictional coefficient, and the feed speed of the pipe, were determined. This study has a great significance in the application of pipe space free bending forming process.
-
表 1 鋁合金管材6061模型參數
Table 1. Model parameters of aluminum alloy 6061 pipe
Density/(g·cm?3) Young's modulus /MPa Yield stress /MPa Q/MPa b C/MPa a 2.76 66788.2 297.98 720.802 14.537 720.802 14.537 259luxu-164 -
參考文獻
[1] Li H, Shi K P, Yang H, et al. Springback law of thin-walled 6061-T4 Al-alloy tube upon bending. Trans Nonferrous Met Soc China, 2012, 22(Suppl 2): s357 [2] Zhang X L, Yang H, Li H, et al. Warm bending mechanism of extrados and intrados of large diameter thin-walled CP-Ti tubes. Trans Nonferrous Met Soc China, 2014, 24(10): 3257 doi: 10.1016/S1003-6326(14)63465-8 [3] Zhang J R, Wang Y J, Wang J B, et al. Analysis on springback of big diameter thin-wall tube bending forming. Aeron Manuf Technol, 2009(19): 91 doi: 10.3969/j.issn.1671-833X.2009.19.019張盡染, 王永軍, 王俊彪, 等. 大直徑薄壁導管彎曲回彈解析計算. 航空制造技術, 2009(19):91 doi: 10.3969/j.issn.1671-833X.2009.19.019 [4] Guo X Z, Ma Y N, Xu Y, et al. State-of-the-Arts in 3D free bending technology and the future application in aviation manufacture. Aeron Manuf Technol, 2016(23-24): 16郭訓忠, 馬燕楠, 徐勇, 等. 三維自由彎曲成形技術及在航空制造業中的潛在應用. 航空制造技術, 2016(23-24):16 [5] Lu S Q, Fang J, Wang K L. Plastic deformation analysis and forming quality prediction of tube NC bending. Chin J Aeron, 2016, 29(5): 1436 doi: 10.1016/j.cja.2016.03.009 [6] Zhan M, Wang Y, Yang H, et al. An analytic model for tube bending springback considering different parameter variations of Ti-alloy tubes. J Mater Process Technol, 2016, 236: 123 doi: 10.1016/j.jmatprotec.2016.05.008 [7] Gantner P, Bauer H, Harrison D K, et al. FEA simulation of bending processes with LS-DYNA//Proceedings of the 8th International LS-Dyna Users Conference. Troy, 2004: 33 [8] Gantner P, Bauer H, Harrison D K, et al. Free-bending—a new bending technique in the hydroforming process chain. J Mater Process Technol, 2005, 167(2-3): 302 doi: 10.1016/j.jmatprotec.2005.05.052 [9] Plettke R, Vatter P H, Vipavc D. Basics of process design for 3D freeform bending. Steel Res Int, 2012, 14: 307 [10] Goto H, Tanaka Y, Ichiryu K. 3D tube forming and applications of a new bending machine with hydraulic parallel kinematics. Int J Autom Technol, 2012, 6(4): 509 doi: 10.20965/ijat.2012.p0509 [11] Kawasumi S, Takeda Y, Matsuura D. Precise pipe-bending by 3-RPSR parallel mechanism considering springback and clearances at dies. T Jpn Soc Mech Eng, 2014, 80(820): 343 [12] Li P F, Wang L Y, Li M Z. Flexible-bending of profiles with asymmetric cross-section and elimination of side bending defect. Int J Adv Manuf Technol, 2016, 87(9-12): 2853 doi: 10.1007/s00170-016-8673-6 [13] Li P F, Wang L Y, Li M Z. Flexible-bending of profiles and tubes of continuous varying radii. Intl J Adv Manuf Technol, 2017, 88(5-8): 1669 doi: 10.1007/s00170-016-8885-9 [14] Yang H, Li H, Zhang Z Y, et al. Advances and trends on tube bending forming technologies. Chin J Aeron, 2012, 25(1): 1 doi: 10.1016/S1000-9361(11)60356-7 [15] Wu J J, Zhang Z K, Shang Q, et al. A method for investigating the springback behavior of 3D tubes. Int J Mech Sci, 2017, 131-132: 191 doi: 10.1016/j.ijmecsci.2017.06.047 [16] Guo X Z, Ma Y N, Chen W L, et al. Simulation and experimental research of the free bending process of a spatial tube. J Mater Process Technol, 2018, 255: 137 doi: 10.1016/j.jmatprotec.2017.11.062 [17] Yue Z M. Ductile Damage Prediction in Sheet Metal Forming Processes[Dissertation]. Troyes: University of Technology of Troyes, 2014 [18] Yue Z M, Badreddine H, Saanouni K, et al. On the distortion of yield surface under complex loading paths in sheet metal forming//Proceedings of the IDDRG 2014: Innovations for the Sheet Metal Industry. Paris, 2014: 246 -