<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

增減材混合制造的研究進展

果春煥 王澤昌 嚴家印 袁丁 姜風春 王建東 牛中毅

果春煥, 王澤昌, 嚴家印, 袁丁, 姜風春, 王建東, 牛中毅. 增減材混合制造的研究進展[J]. 工程科學學報, 2020, 42(5): 540-548. doi: 10.13374/j.issn2095-9389.2019.06.18.006
引用本文: 果春煥, 王澤昌, 嚴家印, 袁丁, 姜風春, 王建東, 牛中毅. 增減材混合制造的研究進展[J]. 工程科學學報, 2020, 42(5): 540-548. doi: 10.13374/j.issn2095-9389.2019.06.18.006
GUO Chun-huan, WANG Ze-chang, YAN Jia-yin, YUAN Ding, JIANG Feng-chun, WANG Jian-dong, NIU Zhong-yi. Research progress in additive–subtractive hybrid manufacturing[J]. Chinese Journal of Engineering, 2020, 42(5): 540-548. doi: 10.13374/j.issn2095-9389.2019.06.18.006
Citation: GUO Chun-huan, WANG Ze-chang, YAN Jia-yin, YUAN Ding, JIANG Feng-chun, WANG Jian-dong, NIU Zhong-yi. Research progress in additive–subtractive hybrid manufacturing[J]. Chinese Journal of Engineering, 2020, 42(5): 540-548. doi: 10.13374/j.issn2095-9389.2019.06.18.006

增減材混合制造的研究進展

doi: 10.13374/j.issn2095-9389.2019.06.18.006
基金項目: 國家重點研發計劃資助項目(2017YFB1103701)
詳細信息
    通訊作者:

    E-mail:fengchunjiang@hrbeu.edu.cn

  • 中圖分類號: TG65

Research progress in additive–subtractive hybrid manufacturing

More Information
  • 摘要: 增材制造可以制造通過傳統方法難以制造的復雜部件,因此在航空工業等領域中得到了大規模的應用。然而,增材制造成形部件的尺寸和幾何精度以及表面質量低于傳統方法成形的部件,阻礙了增材制造的進一步應用。增減材混合制造將增材制造與傳統的加工手段結合,對增材制造成形的部件進行高精度數控加工,以改善部件表面光潔度以及零件的幾何和尺寸精度。本文闡述了增減材混合制造的技術原理和研究進展,并指出了未來的發展方向。

     

  • 圖  1  增減材混合制造原理圖[4]

    Figure  1.  Schematic of the ASHM process[4]

    圖  2  智能微鑄鍛銑混合制造原理圖[5]

    Figure  2.  Principle of smart micro-casting, forging, and milling[5]

    圖  3  ArcHLM工藝采用的帶有冷卻管的夾具[7]

    Figure  3.  Universal fixture with coolant ducts used by ArcHLM[7]

    圖  4  等離子沉積銑削工藝示意圖[21]

    Figure  4.  Schematic of the HPDM process[21]

    圖  5  非均勻層構建策略示意圖[31]。(a)非均勻層;(b)等厚層;(c)加工成等厚層

    Figure  5.  Schematic of non-uniform-layer construction strategy[31]: (a) non-uniform thickness layer; (b) uniform thickness layer; (c) machining process to form uniform thickness layer

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Saunders S. Free 3D systems whitepaper discusses scalable, digital molding process and figure 43D printing[EB/OL]. 3DR Holdings (2018-09-27)[2020-03-23]. https://3dprint.com/225981/digital-molding-whitepaper/
    [2] Ritt S. Trends in metal additive manufacturing: fast and big[EB/OL]. WTWH Media (2013-12-09)[2020-03-23]. https://www.makepartsfast.com/trends-metal-additive-manufacturing-fast-big/
    [3] Chang Y C, Pinilla J M, Kao J H, et al. Automated layer decomposition for additive/subtractive solid freeform fabrication // 1999 International Solid Freeform Fabrication Symposium. Austin, 1999: 111
    [4] Du W, Bai Q, Zhang B. A novel method for additive/subtractive hybrid manufacturing of metallic parts. Procedia Manuf, 2016, 5: 1018 doi: 10.1016/j.promfg.2016.08.067
    [5] Zhang H O, Huang C, Li R S, et al. A super short-process green manufacturing method and energy consumption analysis of micro casting forging and milling for high performance parts. China Mech Eng, 2018, 29(21): 2553

    張海鷗, 黃丞, 李潤聲, 等. 高端金屬零件微鑄鍛銑復合超短流程綠色制造方法及其能耗分析. 中國機械工程, 2018, 29(21):2553
    [6] Akula S, Karunakaran K P. Hybrid adaptive layer manufacturing: an intelligent art of direct metal rapid tooling process. Robot Comput-Integr Manuf, 2006, 22(2): 113 doi: 10.1016/j.rcim.2005.02.006
    [7] Karunakaran K P, Suryakumar S, Pushpa V, et al. Retrofitment of a CNC machine for hybrid layered manufacturing. Int J Adv Manuf Technol, 2009, 45(7): 690
    [8] Sreenathbabu A, Karunakaran K P, Amarnath C. Statistical process design for hybrid adaptive layer manufacturing. Rapid Prototyping J, 2005, 11(4): 235 doi: 10.1108/13552540510612929
    [9] Song Y A, Park S, Choi D, et al. 3D welding and milling: Part I-a direct approach for freeform fabrication of metallic prototypes. Int J Mach Tools Manuf, 2005, 45(9): 1057 doi: 10.1016/j.ijmachtools.2004.11.021
    [10] Song Y A, Park S, Chae S W. 3D welding and milling: Part II - Optimization of the 3D welding process using an experimental design approach. Int J Mach Tools Manuf, 2005, 45(9): 1063 doi: 10.1016/j.ijmachtools.2004.11.022
    [11] Kerschbaumer M, Ernst G. Hybrid manufacturing process for rapid high performance tooling combining high speed milling and laser cladding // Proceedings of the 23rd International Congress on Applications of Lasers & Electro-Optics. Orlando, 2004: 1710
    [12] Jeng J Y, Lin M C. Mold fabrication and modification using hybrid processes of selective laser cladding and milling. J Mater Process Technol, 2001, 110(1): 98 doi: 10.1016/S0924-0136(00)00850-5
    [13] Yasa E, Kruth J P, Deckers J. Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. CIRP Annals, 2011, 60(1): 263 doi: 10.1016/j.cirp.2011.03.063
    [14] Bai Q, Dong Z G, Yan Y, et al. Development of additive / subtractive hybrid manufacturing practical teaching platform for full-time master of engineering students. Lab Sci, 2018, 21(2): 158

    白倩, 董志剛, 閆英, 等. 金屬增減材復合制造專業碩士實踐教學平臺建設. 實驗室科學, 2018, 21(2):158
    [15] Li Q Y, Li D C. Zhang A F, et al. Development and challenges of laser cladding deposition and machining composite manufacturing technology // Proceedings of the 17th National Special Processing Conference (Abstract). Guangzhou, 2017: 194

    李青宇, 李滌塵, 張安峰, 等. 激光熔覆沉積與切削加工復合制造技術的發展與挑戰// 第17屆全國特種加工學術會議論文集(摘要). 廣州, 2017: 194
    [16] Zhang J T, Zhang W, Li Y J, et al. Laser deposition additive/subtractive hybrid manufacturing process for stainless steel powder based on DMG MORI LASERTEC 653D. Mater Sci Eng Powder Metall, 2018, 23(4): 368

    張軍濤, 張偉, 李宇佳, 等. 基于DMG MORI LASERTEC 653D加工中心的不銹鋼粉末激光沉積增/減材復合制造. 粉末冶金材料科學與工程, 2018, 23(4):368
    [17] L?ber L, Flache C, Petters R, et al. Comparison of different post processing technologies for SLM generated 316L steel parts. Rapid Prototyping J, 2013, 19(3): 173 doi: 10.1108/13552541311312166
    [18] Rossi S, Deflorian F, Venturini F. Improvement of surface finishing and corrosion resistance of prototypes produced by direct metal laser sintering. J Mater Process Technol, 2004, 148(3): 301 doi: 10.1016/j.jmatprotec.2003.02.001
    [19] Beaucamp A T, Namba Y, Charlton P, et al. Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG). Surf Topography:Metrology Prop, 2015, 3(2): 024001 doi: 10.1088/2051-672X/3/2/024001
    [20] Sitthi-Amorn P, Ramos J E, Wangy Y, et al. MultiFab: a machine vision assisted platform for multi-material 3D printing. ACM Trans Graph, 2015, 34(4): 129
    [21] Xiong X H, Zhang H O, Wang G L. Metal direct prototyping by using hybrid plasma deposition and milling. J Mater Process Technol, 2009, 209(1): 124 doi: 10.1016/j.jmatprotec.2008.01.059
    [22] Zhu Z, Dhokia V G, Nassehi A, et al. A review of hybrid manufacturing processes - State of the art and future perspectives. Int J Comput Integr Manuf, 2013, 26(7): 596 doi: 10.1080/0951192X.2012.749530
    [23] Hehr A, Wenning J, Terrani K, et al. Five-axis ultrasonic additive manufacturing for nuclear component manufacture. JOM, 2017, 69(3): 485 doi: 10.1007/s11837-016-2205-6
    [24] Peat T, Galloway A, Toumpis A, et al. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing. Appl Surf Sci, 2017, 396: 1635 doi: 10.1016/j.apsusc.2016.10.156
    [25] Courbon C, Sova A, Valiorgue F, et al. Near surface transformations of stainless steel cold spray and laser cladding deposits after turning and ball-burnishing. Surf Coat Technol, 2019, 371: 235 doi: 10.1016/j.surfcoat.2019.01.092
    [26] Flynn J M, Shokrani A, Newman S T, et al. Hybrid additive and subtractive machine tools-Research and industrial developments. Int J Mach Tools Manuf, 2016, 101: 79 doi: 10.1016/j.ijmachtools.2015.11.007
    [27] Eiamsa-Ard K, Nair H J, Ren L, et al. Part repair using a hybrid manufacturing system // Proceedings of the Sixteenth Annual Solid Freeform Fabrication Symposium. Austin, 2005: 1
    [28] Le V T, Paris H, Mandil G. Process planning for combined additive and subtractive manufacturing technologies in a remanufacturing context. J Manuf Syst, 2017, 44: 243 doi: 10.1016/j.jmsy.2017.06.003
    [29] Kulkarni P, Marsan A, Dutta D. A review of process planning techniques in layered manufacturing. Rapid Prototyping J, 2000, 6(1): 18 doi: 10.1108/13552540010309859
    [30] Zhang J, Liou F. Adaptive slicing for a multi-axis laser aided manufacturing process. J Mech Des, 2004, 126(2): 254 doi: 10.1115/1.1649966
    [31] Ruan J Z, Zhang J, Liou F. Selection of part orientation for multi-axis hybrid manufacturing process // ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. San Diego, 2010: 587
    [32] Kerbrat O, Mognol P, Hasco?t J Y. A new DFM approach to combine machining and additive manufacturing. Comput Ind, 2011, 62(7): 684 doi: 10.1016/j.compind.2011.04.003
    [33] Joshi A, Anand S. Geometric complexity based process selection for hybrid manufacturing. Procedia Manuf, 2017, 10: 578 doi: 10.1016/j.promfg.2017.07.056
    [34] Ren L, Eiamsa-ard K, Ruan J Z, et al. Part repairing using a hybrid manufacturing system// ASME 2007 International Manufacturing Science and Engineering Conference. Atlanta, 2007: MSEC2007-31003
    [35] Manogharan G, Wysk R, Harrysson O, et al. AIMS - a metal additive-hybrid manufacturing system: system architecture and attributes. Procedia Manuf, 2015, 1: 273 doi: 10.1016/j.promfg.2015.09.021
    [36] Newman S T, Zhu Z C, Dhokia V, et al. Process planning for additive and subtractive manufacturing technologies. CIRP Annals, 2015, 64(1): 467 doi: 10.1016/j.cirp.2015.04.109
    [37] Zhu Z C, Dhokia V, Newman S T. The development of a novel process planning algorithm for an unconstrained hybrid manufacturing process. J Manuf Processes, 2013, 15(4): 404 doi: 10.1016/j.jmapro.2013.06.006
    [38] Ranjan R, Samant R, Anand S. Design for manufacturability in additive manufacturing using a graph based approach // ASME 2015 International Manufacturing Science and Engineering Conference. Charlotte, 2015: MSEC2015-9448
    [39] Ranjan R, Samant R, Anand S. Integration of design for manufacturing methods with topology optimization in additive manufacturing. J Manuf Sci Eng, 2017, 139(6): 061007 doi: 10.1115/1.4035216
    [40] Lutter-Günther M, Wagner S, Seidel C, et al. Economic and ecological evaluation of hybrid additive manufacturing technologies based on the combination of laser metal deposition and CNC machining. Appl Mech Mater, 2015, 805: 213 doi: 10.4028/www.scientific.net/AMM.805.213
  • 加載中
圖(5)
計量
  • 文章訪問數:  2905
  • HTML全文瀏覽量:  1863
  • PDF下載量:  273
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-06-18
  • 刊出日期:  2020-05-01

目錄

    /

    返回文章
    返回