Numerical simulation of electro?thermal coupling process for spent cathode carbon block from aluminum electrolysis cell
-
摘要: 廢陰極炭塊是鋁電解槽大修時產生的一種危險固體廢棄物,對其進行安全處置和資源化利用的關鍵是深度分離其中的有價組分炭和氟化鹽。采用火法工藝對廢陰極炭塊進行處理,明確了氟化鹽的揮發溫度。基于氟化鹽的揮發析出性質,設計了高溫熱處理電阻爐,并對其傳熱特性、控溫規律以及氟化鹽有效揮發區域進行了三維數值解析。實驗確定氟化物的有效揮發溫度為≥1700 ℃,該溫度段下其揮發率可達93.1%以上。通過模擬不同供電模式下爐內溫度場的演變規律,得到:在12 V升溫24 h,9 V保溫12 h的供電條件下,升溫階段爐內最高溫度可達2250 ℃,氟化鹽理論揮發區域占比可達98%;采用逐級遞減的電壓供給制度可以保證1700 ℃以上溫度區域維持20 h,大幅度延長了有效熱處理時間,有利于廢陰極炭塊中炭與氟化鹽的深度分離。Abstract: Spent cathode carbon block (SCCB) is considered to be a kind of hazardous waste, because it contains a large amount of soluble fluoride salts and toxic cyanides. The life of an aluminum electrolytic cell is generally 5?8 years, and the SCCB would be produced during the overhaul of the cell. Currently, most SCCBs are piled in landfills or stored for disposal in China. The unreasonable disposal of SCCBs will cause serious pollution and damage to the ecological environment, and wastage of valuable carbon material and fluoride salts. The key to the safe disposal and resource utilization of SCCBs is to separate the carbon and fluoride salts deeply. In this study, SCCB was treated by the pyrometallurgical process, and the characteristics of volatilization temperature of fluoride salts were firstly experimentally determined. For a laboratory-scale self-designed high temperature resistance furnace, a three-dimensional model was built and numerical calculation was performed. The heat transfer characteristics, temperature control law and effective volatilization region of fluoride salts were analyzed in detail. The experimental results demonstrate that the effective volatilization temperature of fluoride is higher than 1700 ℃, and the volatilization rate is higher than 93.1%. By simulating the evolution of the temperature field in the furnace under different power supply modes, it is obtained that under the power supply condition of heating at 12 V for 24 h and holding 9 V for 12 h, the maximum temperature in the furnace during the heating phase can reach 2250 ℃, and the theoretical volatilization volume of fluoride salts can reach 98%. After optimization, a step-by-step decreasing mode of power supply can improve the efficiency of treating SCCBs. Moreover, the treating temperature can be maintained for 20 h at 1700 ℃, which is beneficial to the deep separation of carbon material and fluoride salts in SCCB.
-
表 1 爐型結構尺寸
Table 1. Structure size of the high temperature resistance furnace
mm Parameters Numbers Length 3210 Height 1680 Width 1780 Thickness of carbon brick 230 Thickness of insulating filler 65 Thickness of high alumina brick 230 Thickness of insulating brick 230 Thickness of rock wool 50 Dimensions of electrode 300×300×805 Dimensions of furnace hearth 500×500×1600 Dimensions of furnace core 50×50×1600 表 2 熱物性參數
Table 2. Thermophysical properties used in this study
Parameters Density /(kg?m?3) Specific heat /(J?kg?1?K?1) Thermal conductivity /(W?m?1?K?1) Conductivity /(S?m?1) Carbon block 1500 800 10 1×10?10 Insulating filler 450 1465 0.65 1×10?10 High alumina brick 1500 1100 0.786 1×10?10 Insulating brick 1000 1200 0.3 1×10?10 Rock wool 135 900 0.06 1×10?10 Graphite felt 1400 900 0.01 1×10?10 SCCB 850 840 6 2.127×103 Electrode 1600 700 12.4 1.13×10?5 表 3 廢陰極炭塊的元素組成與含量
Table 3. Composition and the content of various elements in SCCB
% C F Na Al Ca Fe Else 59.2 16.73 13.62 7.87 1.43 0.94 0.21 259luxu-164 -
參考文獻
[1] Birry L, Leclerc S, Poirier S. The LCL&L process: a sustainable solution for the treatment and recycling of spent potlining // Light Metals 2016. Switzerland: Springer Cham, 2016. 467 [2] Cao X Z, Shi Y Y, Zhao S, et al. Recovery of valuable components from spent pot-lining of aluminium electrolytic reduction cells. J Northeast Univ Nat Sci, 2014, 35(12): 1746曹曉舟, 時園園, 趙爽, 等. 鋁電解槽廢舊陰極炭塊中有價組分的回收. 東北大學學報: 自然科學版, 2014, 35(12):1746 [3] Bao L F, Zhao J X, Tang W D, et al. Separation and recycling use of waste cathode in aluminium electrolysis cells. China Nonferrous Metall, 2014, 43(3): 51 doi: 10.3969/j.issn.1672-6103.2014.03.015鮑龍飛, 趙俊學, 唐雯聃, 等. 鋁電解槽廢舊陰極的分選與回收利用. 中國有色冶金, 2014, 43(3):51 doi: 10.3969/j.issn.1672-6103.2014.03.015 [4] Holywell, G, Breault, R. An overview of useful methods to treat, recover, or recycle spent potlining. JOM, 2013, 65(11): 1441 doi: 10.1007/s11837-013-0769-y [5] Ma J L, Shang X F, Ma Y P, et al. Directions for development of hazardous waste treatment technologies in electrolytic aluminum industry. Environ Prot Chem Ind, 2016, 36(1): 11 doi: 10.3969/j.issn.1006-1878.2016.01.003馬建立, 商曉甫, 馬云鵬, 等. 電解鋁工業危險廢物處理技術的發展方向. 化工環保, 2016, 36(1):11 doi: 10.3969/j.issn.1006-1878.2016.01.003 [6] Hittner H J, Byers L R, Lees Jr. J N, et al. Rotary Kilntreatment of Potliner: US Patent, 5711018. 1998-01-20 [7] Barrillon E, Personnet P, Bontron J. Process for the Thermal Shock Treatment of Spent Pot Linings Obtained from Hall-heroult Electrolytic Cells: US Patent, 5245115. 1993-09-14 [8] Grolman R J, Holywell G C, Kimmerle F M, et al. Recycling of Spent Pot Linings: US Patent, 5740559. 1995-11-28 [9] Sorlie M, Oye H A. Cathodes in Aluminium Electrolysis. 3rd edition. Berlin: Beuth Verlag GmbH, 2010 [10] Chen X P, Li W X, Zhou J M, et al. Studying on the toxicity of spent potline in aluminum electrolysis. Light Met, 2005(12): 33 doi: 10.3969/j.issn.1002-1752.2005.12.009陳喜平, 李旺興, 周孑民, 等. 鋁電解廢槽內襯的危害性研究. 輕金屬, 2005(12):33 doi: 10.3969/j.issn.1002-1752.2005.12.009 [11] Zhai X J, Qiu Z X. Applying flotation to separate electrolyte from spent carbon of aluminum electrolysis. Nonferrous Met, 1993, 45(2): 38翟秀靜, 邱竹賢. 鋁電解槽廢舊陰極炭塊中電解質與炭分離的浮選法研究. 有色金屬, 1993, 45(2):38 [12] Bell N, Andersen J N, Lam H K H. Process for the Utilization of Waste Materials from Electrolytic Aluminum Reduction Systems: US Patent, 4113832. 1978-12-12 [13] Lisbona D F, Somerfield C, Steel K M. Leaching of spent pot-lining with aluminium nitrate and nitric acid: effect of reaction conditions and thermodynamic modeling of solution speciation. Hydrometallurgy, 2013, 134: 132 [14] Flores I V, Fraiz F, Lopes Junior R A L, et al. Evaluation of spent pot lining (SPL) as an alternative carbonaceous material in ironmaking processes. J Mater Res Technol, 2019, 8(1): 33 doi: 10.1016/j.jmrt.2017.11.004 [15] Renó M L G, Torres F M, da Silva R J, et al. Exergy analyses in cement production applying waste fuel and mineralizer. Energy Convers Manage, 2013, 75: 98 doi: 10.1016/j.enconman.2013.05.043 [16] Ghenai C, Inayat A, Shanableh A, et al. Combustion and emissions analysis of Spent Pot lining (SPL) as alternative fuel in cement industry. Sci Total Environ, 2019, 684: 519 doi: 10.1016/j.scitotenv.2019.05.157 [17] Yang J Q. The Research about Process and Equipment of Coal Prepare to Graphite in the Ultra High Temperature[Dissertation]. Xi’an: Xi’an University of Science and Technology, 2015楊家慶. 煤炭超高溫制備石墨工藝及其設備研究[學位論文]. 西安: 西安科技大學, 2015 [18] Li Y G. Study on Simulation and Optimization of High-temperature Electric Heating Process[Dissertation]. Qingdao: Ocean University of China, 2011李勇剛. 高溫電加熱過程模擬與優化的研究[學位論文]. 青島: 中國海洋大學, 2011 [19] Zhang B, Qi H, Ruan L M. Two-dimensional simulation for the effective thermal conductivity of heat-sealing porous material. J Eng Thermophys, 2012, 33(7): 1229張彪, 齊宏, 阮立明. 二維多孔熱密封材料的有效導熱系數模擬. 工程熱物理學報, 2012, 33(7):1229 [20] Gu L J, Wen Z, Dou R F, et al. Acheson graphitization furnace and the simulation of temperature distribution. Energy Metall Ind, 2012, 31(5): 28 doi: 10.3969/j.issn.1001-1617.2012.05.008顧鸝鋆, 溫治, 豆瑞鋒, 等. 艾奇遜石墨化爐爐溫分布特性的仿真研究. 冶金能源, 2012, 31(5):28 doi: 10.3969/j.issn.1001-1617.2012.05.008 [21] Xu H F, Liu C D, Wang Y B, et al. Numerical simulation of heat field in lengthwise graphitization furnace during heating process. Carbon Tech, 2009, 28(1): 1 doi: 10.3969/j.issn.1001-3741.2009.01.001許海飛, 劉朝東, 王玉彬, 等. 內熱串接石墨化爐加熱過程熱場數值模擬. 炭素技術, 2009, 28(1):1 doi: 10.3969/j.issn.1001-3741.2009.01.001 -