<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

粒度大小對赤鐵礦和石英浮選分離的影響

李東 李正要 印萬忠 孫春寶 寇玨 姚金 韓會麗

李東, 李正要, 印萬忠, 孫春寶, 寇玨, 姚金, 韓會麗. 粒度大小對赤鐵礦和石英浮選分離的影響[J]. 工程科學學報, 2020, 42(5): 586-594. doi: 10.13374/j.issn2095-9389.2019.06.06.006
引用本文: 李東, 李正要, 印萬忠, 孫春寶, 寇玨, 姚金, 韓會麗. 粒度大小對赤鐵礦和石英浮選分離的影響[J]. 工程科學學報, 2020, 42(5): 586-594. doi: 10.13374/j.issn2095-9389.2019.06.06.006
LI Dong, LI Zheng-yao, YIN Wan-zhong, SUN Chun-bao, KOU Jue, YAO Jin, HAN Hui-li. Effect of particle size on flotation separation of hematite and quartz[J]. Chinese Journal of Engineering, 2020, 42(5): 586-594. doi: 10.13374/j.issn2095-9389.2019.06.06.006
Citation: LI Dong, LI Zheng-yao, YIN Wan-zhong, SUN Chun-bao, KOU Jue, YAO Jin, HAN Hui-li. Effect of particle size on flotation separation of hematite and quartz[J]. Chinese Journal of Engineering, 2020, 42(5): 586-594. doi: 10.13374/j.issn2095-9389.2019.06.06.006

粒度大小對赤鐵礦和石英浮選分離的影響

doi: 10.13374/j.issn2095-9389.2019.06.06.006
基金項目: 國家自然科學基金資助項目(51904020);中國博士后科學基金資助項目(2019M660466);中央高校基本科研業務費資助項目(FRF-TP-18-082A1)
詳細信息
    通訊作者:

    E-mail: zyli0213@ustb.edu.cn

  • 中圖分類號: TD923

Effect of particle size on flotation separation of hematite and quartz

More Information
  • 摘要: 通過浮選試驗、DLVO理論計算、聚焦光束反射測量(FBRM)等研究了油酸鈉浮選體系下粒度大小對赤鐵礦和石英浮選分離的影響。人工混合礦浮選試驗表明,窄粒級粗粒或中等粒級的赤鐵礦?石英混合礦(CH&CQ和MH&CQ)的浮選效果較好,其中CH&CQ和MH&CQ的分選效率分別為85.49%和84.26%,明顯高于全粒級混合礦(RH&RQ)的分選效率74.94%;但窄粒級的細粒赤鐵礦?石英混合礦(FH&FQ)的浮選效果則較差,其分選效率只有54.98%。浮選動力學試驗表明,赤鐵礦的浮選速率和回收率不僅與赤鐵礦的粒度有關,還受石英粒度的影響,細粒脈石礦物石英會降低赤鐵礦的浮選速率和回收率。DLVO理論計算表明,當礦漿pH值為9.0時,石英與赤鐵礦顆粒間的相互作用力為斥力,此時細粒石英很難“罩蓋”在赤鐵礦表面并通過這種“直接作用”的方式抑制赤鐵礦浮選,這也與聚焦光束反射測量(FBRM)的測定結果基本一致;顆粒?氣泡碰撞分析表明,在浮選過程中細粒石英可能通過“邊界層效應”的方式跟隨氣泡升浮(夾帶作用),影響赤鐵礦顆粒與氣泡間的碰撞及黏附,從而降低了赤鐵礦的浮選速率和回收率。

     

  • 圖  1  赤鐵礦和石英的X射線衍射圖。(a) 赤鐵礦;(b) 石英

    Figure  1.  X-ray diffraction spectra of hematite and quartz: (a) hematite; (b) quartz

    圖  2  礦物粒度的累積分布曲線。(a) 赤鐵礦;(b) 石英

    Figure  2.  Cumulative particle distributions of minerals: (a) hematite; (b) quartz

    圖  3  赤鐵礦?石英混合礦浮選分離原理和藥劑制度示意圖

    Figure  3.  Schematic of the flotation separation principle and reagent regime for hematite–quartz mixtures

    圖  4  聚焦光束反射測量系統示意圖

    Figure  4.  Schematic of the focused beam reflectance measurement (FBRM) system

    圖  5  粒度對赤鐵礦?石英混合礦浮選分離的影響(pH,9.0;油酸鈉,每噸400 g)

    Figure  5.  Influence of particle size on the separation of hematite and quartz (pH, 9.0; sodium oleate, 400 g per ton)

    圖  6  石英粒度對粗粒級赤鐵礦(CH)浮選的影響(pH,9.0;油酸鈉,每噸400 g)

    Figure  6.  Influence of quartz particle size on the flotation of hematite (CH) (pH, 9.0; sodium oleate, 400 g per ton)

    圖  7  石英粒度對中等粒級赤鐵礦(MH)浮選的影響(pH,9.0;油酸鈉,每噸400 g)

    Figure  7.  Influence of quartz particle size on the flotation of hematite (MH) (pH, 9.0; sodium oleate, 400 g per ton)

    圖  8  石英粒度對細粒級赤鐵礦(FH)浮選的影響(pH,9.0;油酸鈉,每噸400 g)

    Figure  8.  Influence of quartz particle size on the flotation of hematite (FH) (pH, 9.0; sodium oleate, 400 g per ton)

    圖  9  不同粒度組成的赤鐵礦?石英混合礦的提質分離曲線(pH,9.0;油酸鈉,每噸400 g)

    Figure  9.  Upgrading curves of hematite–quartz mixtures with different particle sizes (pH, 9.0; sodium oleate, 400 g per ton)

    圖  10  礦物的Zeta電位與pH的關系曲線(油酸鈉,30 mg·L?1

    Figure  10.  Relationship between zeta potentials and pH values (sodium oleate, 30 mg·L?1)

    圖  11  赤鐵礦與石英顆粒間的相互作用力VTD

    Figure  11.  Interaction energies VTD between hematite and quartz particles

    圖  12  赤鐵礦?石英混合礦的粒度分布特性隨時間變化的關系曲線(pH, 9.0;攪拌速度,500 r·min?1;油酸鈉(30 mg·L?1)在180 s處加入到礦漿中)

    Figure  12.  Particle/aggregate size distribution of hematite–quartz mixtures as a function of stirring time (pH, 9.0; stirring speed, 500 r·min?1; sodium oleate (30 mg·L?1) was added at 180 s)

    表  1  單礦物化學多元素分析結果(質量分數)

    Table  1.   Chemical element analysis results of single minerals %

    MineralsTFeFeOSiO2Al2O3MgOCaOPS
    Hematite68.170.431.650.280.040.080.020.05
    Quartz0.0299.220.040.05
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Han Y X, Gao P, Li Y J, et al. Development strategies of available use of inferior quality and optimal use of high quality for domestic iron ore resources. Metal Mine, 2016, 45(12): 2 doi: 10.3969/j.issn.1001-1250.2016.12.002

    韓躍新, 高鵬, 李艷軍, 等. 我國鐵礦資源“劣質能用、優質優用”發展戰略研究. 金屬礦山, 2016, 45(12):2 doi: 10.3969/j.issn.1001-1250.2016.12.002
    [2] Chen W. Technological process in processing low-grade fine-grained complicated refractory iron ores. Metal Mine, 2010, 39(5): 55

    陳雯. 貧細雜難選鐵礦石選礦技術進展. 金屬礦山, 2010, 39(5):55
    [3] Peng Y L, Liang L, Tan J K, et al. Effect of flotation reagent adsorption by different ultra-fine coal particles on coal flotation. Int J Miner Process, 2015, 142: 17 doi: 10.1016/j.minpro.2014.12.005
    [4] Ni C, Xie G Y, Jin M G, et al. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder Technol, 2016, 292: 210 doi: 10.1016/j.powtec.2016.02.004
    [5] Li W B, Zhou L B, Han Y X, et al. Effect of carboxymethyl starch on fine-grained hematite recovery by high-intensity magnetic separation: experimental investigation and theoretical analysis. Powder Technol, 2019, 343: 270 doi: 10.1016/j.powtec.2018.11.024
    [6] Ni C, Bu X N, Xia W C, et al. Observing slime-coating of fine minerals on the lump coal surface using particle vision and measurement. Powder Technol, 2018, 339: 434 doi: 10.1016/j.powtec.2018.08.034
    [7] Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation. Miner Eng, 2010, 23(5): 420 doi: 10.1016/j.mineng.2009.12.006
    [8] Li D, Yin W Z, Yao J, et al. Classification flotation of Donganshan siderite-containing hematite ore. Metal Mine, 2016, 45(12): 51 doi: 10.3969/j.issn.1001-1250.2016.12.012

    李東, 印萬忠, 姚金, 等. 東鞍山含菱鐵礦赤鐵礦石分級浮選試驗研究. 金屬礦山, 2016, 45(12):51 doi: 10.3969/j.issn.1001-1250.2016.12.012
    [9] Thella J S, Mukherjee A K, Srikakulapu N G. Processing of high alumina iron ore slimes using classification and flotation. Powder Technol, 2012, 217: 418 doi: 10.1016/j.powtec.2011.10.058
    [10] Xie G Y, Wu L, Ou Z S, et al. Research on fine coal classified flotation flowsheet. J China Univ Min Technol, 2005, 34(6): 756 doi: 10.3321/j.issn:1000-1964.2005.06.016

    謝廣元, 吳玲, 歐澤深, 等. 煤泥分級浮選工藝的研究. 中國礦業大學學報, 2005, 34(6):756 doi: 10.3321/j.issn:1000-1964.2005.06.016
    [11] Xing Y W, Gui X H, Liu J T, et al. Experimental study of classified flotation based on energy input and distribution. J China Univ Min Technol, 2015, 44(5): 923

    邢耀文, 桂夏輝, 劉炯天, 等. 基于能量適配的分級浮選試驗研究. 中國礦業大學學報, 2015, 44(5):923
    [12] Xie G Y, Wu L, Ou Z S, et al. Research on fine coal classified flotation process and key technology. Procedia Earth Planet Sci, 2009, 1(1): 701 doi: 10.1016/j.proeps.2009.09.110
    [13] Yao M Q. Research on Classification Flotation of Low-Grade Phosphorite in Jinning [Dissertation]. Kunming: Kunming University of Science and Technology, 2018

    姚孟齊. 晉寧低品位磷礦分級浮選試驗研究[學位論文]. 昆明: 昆明理工大學, 2018
    [14] Zhou W, Yu C F, Wang T, et al. Research on sizing process of fine coal sized flotation. Coal Preparation Technol, 2013(6): 34

    周偉, 庾朝富, 王濤, 等. 煤泥分級浮選中分級工藝的研究. 選煤技術, 2013(6):34
    [15] Xing Y W, Xu X H, Gui X H, et al. Effect of kaolinite and montmorillonite on fine coal flotation. Fuel, 2017, 195: 284 doi: 10.1016/j.fuel.2017.01.058
    [16] Li D, Yin W Z, Liu Q, et al. Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation. Miner Eng, 2017, 114: 74 doi: 10.1016/j.mineng.2017.09.012
    [17] Yu Y X, Cheng G, Ma L Q, et al. Effect of agitation on the interaction of coal and kaolinite in flotation. Powder Technol, 2017, 313: 122 doi: 10.1016/j.powtec.2017.03.002
    [18] Qiu G Z, Hu Y H, Wang D Z. Interaction of Particles and Flotation Techniques of Fine Particles. Changsha: Central South University of Technology Press, 1993

    邱冠周, 胡岳華, 王淀佐. 顆粒間的相互作用和細粒浮選. 長沙: 中南工業大學出版社, 1993
    [19] Yin W Z, Yang X S, Zhou D P, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans Nonferrous Met Soc China, 2011, 21(3): 652 doi: 10.1016/S1003-6326(11)60762-0
    [20] Neethling S J, Cilliers J J. The entrainment of gangue into a flotation froth. Int J Miner Process, 2002, 64(2-3): 123 doi: 10.1016/S0301-7516(01)00067-9
    [21] Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003
  • 加載中
圖(12) / 表(1)
計量
  • 文章訪問數:  3527
  • HTML全文瀏覽量:  1376
  • PDF下載量:  80
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-06-06
  • 刊出日期:  2020-05-01

目錄

    /

    返回文章
    返回