-
摘要: 通過浮選試驗、DLVO理論計算、聚焦光束反射測量(FBRM)等研究了油酸鈉浮選體系下粒度大小對赤鐵礦和石英浮選分離的影響。人工混合礦浮選試驗表明,窄粒級粗粒或中等粒級的赤鐵礦?石英混合礦(CH&CQ和MH&CQ)的浮選效果較好,其中CH&CQ和MH&CQ的分選效率分別為85.49%和84.26%,明顯高于全粒級混合礦(RH&RQ)的分選效率74.94%;但窄粒級的細粒赤鐵礦?石英混合礦(FH&FQ)的浮選效果則較差,其分選效率只有54.98%。浮選動力學試驗表明,赤鐵礦的浮選速率和回收率不僅與赤鐵礦的粒度有關,還受石英粒度的影響,細粒脈石礦物石英會降低赤鐵礦的浮選速率和回收率。DLVO理論計算表明,當礦漿pH值為9.0時,石英與赤鐵礦顆粒間的相互作用力為斥力,此時細粒石英很難“罩蓋”在赤鐵礦表面并通過這種“直接作用”的方式抑制赤鐵礦浮選,這也與聚焦光束反射測量(FBRM)的測定結果基本一致;顆粒?氣泡碰撞分析表明,在浮選過程中細粒石英可能通過“邊界層效應”的方式跟隨氣泡升浮(夾帶作用),影響赤鐵礦顆粒與氣泡間的碰撞及黏附,從而降低了赤鐵礦的浮選速率和回收率。Abstract: Generally, the flotation performance of mineral particles in a wide size range is usually poor, which can be attributed to the high reagent consumptions and low floatability differences between valuable and gangue minerals. Classification flotation is an effective method for improving the flotation efficiency of particles in a wide size range and is commonly used for coal slime. However, for refractory iron ores, the literature on the relative technology and basic theory of classification flotation, which are necessary and beneficial for the effective utilization of refractory iron ore resources, is scarce. In this study, flotation tests, DLVO theory calculations, and focused beam reflectance measurement (FBRM) particle size analysis were used to analyze the effect of particle size distribution on the flotation separation of hematite and quartz in the sodium oleate system. The flotation results of artificial mixtures show that the flotation performance of coarse or medium hematite–quartz mixture (such as CH&CQ and MH&CQ) with a narrow size range is better than that of the wide size range mixtures. The separation efficiency of CH&CQ and MH&CQ is 85.49% and 84.26%, respectively, which is higher than that of the wide size range mixtures (74.94%). However, the separation efficiency of fine hematite–quartz mixture with a narrow size range (FH&FQ) decreases to 54.98%. The flotation kinetic tests demonstrate that the flotation rate and recovery of hematite are not only related to the particle size of hematite but also influenced by the particle size of quartz. The fine quartz particles could reduce the hematite flotation rate and recovery. The DLVO theory calculations demonstrate that the interaction energies between hematite and quartz are repulsive, indicating that fine quartz particles scarcely cover the hematite surface to depress floatability, which is consistent with the FBRM results. The bubble–particle collision analysis indicates that the collision between hematite and bubbles might be influenced by the “boundary layer” effects of fine quartz particles, resulting in the decreased bubble–particle efficiency of collision and attachment, which may explain the decrease in hematite flotation rate and recovery.
-
Key words:
- hematite /
- quartz /
- flotation separation /
- particle size /
- DLVO theory
-
表 1 單礦物化學多元素分析結果(質量分數)
Table 1. Chemical element analysis results of single minerals
% Minerals TFe FeO SiO2 Al2O3 MgO CaO P S Hematite 68.17 0.43 1.65 0.28 0.04 0.08 0.02 0.05 Quartz 0.02 — 99.22 0.04 — 0.05 — — 259luxu-164 -
參考文獻
[1] Han Y X, Gao P, Li Y J, et al. Development strategies of available use of inferior quality and optimal use of high quality for domestic iron ore resources. Metal Mine, 2016, 45(12): 2 doi: 10.3969/j.issn.1001-1250.2016.12.002韓躍新, 高鵬, 李艷軍, 等. 我國鐵礦資源“劣質能用、優質優用”發展戰略研究. 金屬礦山, 2016, 45(12):2 doi: 10.3969/j.issn.1001-1250.2016.12.002 [2] Chen W. Technological process in processing low-grade fine-grained complicated refractory iron ores. Metal Mine, 2010, 39(5): 55陳雯. 貧細雜難選鐵礦石選礦技術進展. 金屬礦山, 2010, 39(5):55 [3] Peng Y L, Liang L, Tan J K, et al. Effect of flotation reagent adsorption by different ultra-fine coal particles on coal flotation. Int J Miner Process, 2015, 142: 17 doi: 10.1016/j.minpro.2014.12.005 [4] Ni C, Xie G Y, Jin M G, et al. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder Technol, 2016, 292: 210 doi: 10.1016/j.powtec.2016.02.004 [5] Li W B, Zhou L B, Han Y X, et al. Effect of carboxymethyl starch on fine-grained hematite recovery by high-intensity magnetic separation: experimental investigation and theoretical analysis. Powder Technol, 2019, 343: 270 doi: 10.1016/j.powtec.2018.11.024 [6] Ni C, Bu X N, Xia W C, et al. Observing slime-coating of fine minerals on the lump coal surface using particle vision and measurement. Powder Technol, 2018, 339: 434 doi: 10.1016/j.powtec.2018.08.034 [7] Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation. Miner Eng, 2010, 23(5): 420 doi: 10.1016/j.mineng.2009.12.006 [8] Li D, Yin W Z, Yao J, et al. Classification flotation of Donganshan siderite-containing hematite ore. Metal Mine, 2016, 45(12): 51 doi: 10.3969/j.issn.1001-1250.2016.12.012李東, 印萬忠, 姚金, 等. 東鞍山含菱鐵礦赤鐵礦石分級浮選試驗研究. 金屬礦山, 2016, 45(12):51 doi: 10.3969/j.issn.1001-1250.2016.12.012 [9] Thella J S, Mukherjee A K, Srikakulapu N G. Processing of high alumina iron ore slimes using classification and flotation. Powder Technol, 2012, 217: 418 doi: 10.1016/j.powtec.2011.10.058 [10] Xie G Y, Wu L, Ou Z S, et al. Research on fine coal classified flotation flowsheet. J China Univ Min Technol, 2005, 34(6): 756 doi: 10.3321/j.issn:1000-1964.2005.06.016謝廣元, 吳玲, 歐澤深, 等. 煤泥分級浮選工藝的研究. 中國礦業大學學報, 2005, 34(6):756 doi: 10.3321/j.issn:1000-1964.2005.06.016 [11] Xing Y W, Gui X H, Liu J T, et al. Experimental study of classified flotation based on energy input and distribution. J China Univ Min Technol, 2015, 44(5): 923邢耀文, 桂夏輝, 劉炯天, 等. 基于能量適配的分級浮選試驗研究. 中國礦業大學學報, 2015, 44(5):923 [12] Xie G Y, Wu L, Ou Z S, et al. Research on fine coal classified flotation process and key technology. Procedia Earth Planet Sci, 2009, 1(1): 701 doi: 10.1016/j.proeps.2009.09.110 [13] Yao M Q. Research on Classification Flotation of Low-Grade Phosphorite in Jinning [Dissertation]. Kunming: Kunming University of Science and Technology, 2018姚孟齊. 晉寧低品位磷礦分級浮選試驗研究[學位論文]. 昆明: 昆明理工大學, 2018 [14] Zhou W, Yu C F, Wang T, et al. Research on sizing process of fine coal sized flotation. Coal Preparation Technol, 2013(6): 34周偉, 庾朝富, 王濤, 等. 煤泥分級浮選中分級工藝的研究. 選煤技術, 2013(6):34 [15] Xing Y W, Xu X H, Gui X H, et al. Effect of kaolinite and montmorillonite on fine coal flotation. Fuel, 2017, 195: 284 doi: 10.1016/j.fuel.2017.01.058 [16] Li D, Yin W Z, Liu Q, et al. Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation. Miner Eng, 2017, 114: 74 doi: 10.1016/j.mineng.2017.09.012 [17] Yu Y X, Cheng G, Ma L Q, et al. Effect of agitation on the interaction of coal and kaolinite in flotation. Powder Technol, 2017, 313: 122 doi: 10.1016/j.powtec.2017.03.002 [18] Qiu G Z, Hu Y H, Wang D Z. Interaction of Particles and Flotation Techniques of Fine Particles. Changsha: Central South University of Technology Press, 1993邱冠周, 胡岳華, 王淀佐. 顆粒間的相互作用和細粒浮選. 長沙: 中南工業大學出版社, 1993 [19] Yin W Z, Yang X S, Zhou D P, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans Nonferrous Met Soc China, 2011, 21(3): 652 doi: 10.1016/S1003-6326(11)60762-0 [20] Neethling S J, Cilliers J J. The entrainment of gangue into a flotation froth. Int J Miner Process, 2002, 64(2-3): 123 doi: 10.1016/S0301-7516(01)00067-9 [21] Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003 -