<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

不同分子結構表面活性劑對低氧化度氧化石墨插層機理的探索

胡陽 解鑫 孫春寶 寇玨

胡陽, 解鑫, 孫春寶, 寇玨. 不同分子結構表面活性劑對低氧化度氧化石墨插層機理的探索[J]. 工程科學學報, 2020, 42(1): 84-90. doi: 10.13374/j.issn2095-9389.2019.06.03.001
引用本文: 胡陽, 解鑫, 孫春寶, 寇玨. 不同分子結構表面活性劑對低氧化度氧化石墨插層機理的探索[J]. 工程科學學報, 2020, 42(1): 84-90. doi: 10.13374/j.issn2095-9389.2019.06.03.001
HU Yang, XIE Xin, SUN Chun-bao, KOU Jue. Study of the intercalation mechanisms of surfactants with different molecular structures on mildly oxidized graphite[J]. Chinese Journal of Engineering, 2020, 42(1): 84-90. doi: 10.13374/j.issn2095-9389.2019.06.03.001
Citation: HU Yang, XIE Xin, SUN Chun-bao, KOU Jue. Study of the intercalation mechanisms of surfactants with different molecular structures on mildly oxidized graphite[J]. Chinese Journal of Engineering, 2020, 42(1): 84-90. doi: 10.13374/j.issn2095-9389.2019.06.03.001

不同分子結構表面活性劑對低氧化度氧化石墨插層機理的探索

doi: 10.13374/j.issn2095-9389.2019.06.03.001
基金項目: 國家自然科學青年基金資助項目(51804021)
詳細信息
    通訊作者:

    E-mail:koujue@ustb.edu.cn

  • 中圖分類號: TB32

Study of the intercalation mechanisms of surfactants with different molecular structures on mildly oxidized graphite

More Information
  • 摘要: 以人造石墨為原料制備了低氧化程度的氧化石墨(MOG),并研究了具有不同極性基團和不同碳鏈長度的表面活性劑對氧化石墨的插層機理。通過X射線衍射(XRD)、紅外光譜(FT-IR)、X射線光電子能譜(XPS)、拉曼光譜(Raman)和Zeta電位儀對插層前后的氧化石墨進行表征,探討表面活性劑的分子結構對其插層能力的影響以及表面活性劑的插層機理。結果表明陽離子表面活性劑主要通過其極性端與氧化石墨的羧基、羥基之間的靜電吸引作用進入氧化石墨層間進行插層,其插層效果優于陰離子表面活性劑,更容易增大氧化石墨的層間距。陰離子表面活性劑則通過與氧化石墨之間形成氫鍵和疏水作用力來進行插層。研究表明:表面活性劑極性基團的分子大小越大,非極性端的碳鏈越長,其插層能力越強。上述研究成果有助于深入認識表面活性在氧化石墨層間的插層機理,同時也對氧化石墨插層改性材料的制備和應用具有重要的指導意義。

     

  • 圖  1  氧化石墨和石墨的X射線衍射譜圖

    Figure  1.  XRD patterns of graphite and MOG

    圖  2  不同pH下氧化石墨的Zeta電位圖

    Figure  2.  Zeta potential of MOG at different pH values

    圖  3  十二烷胺鹽酸鹽、十二烷基三甲基氯化銨、十二烷基二甲基芐基氯化銨和月桂酸鈉的分子結構式

    Figure  3.  Molecular formula of DDACl、DTAC、DDBAC, and SL

    圖  4  十二烷胺鹽酸鹽、十二烷基三甲基氯化銨、十二烷基二甲基芐基氯化銨和月桂酸鈉插層氧化石墨前后的X射線衍射譜圖

    Figure  4.  XRD patterns of MOG, MOG?DDACl, MOG?DTAC, MOG?DDBAC, and MOG?SL

    圖  5  乙酸鈉、月桂酸鈉和硬脂酸鈉的分子結構式

    Figure  5.  Molecular formula of SA, SL, and SS

    圖  6  乙酸鈉、月桂酸鈉和硬脂酸鈉插層氧化石墨前后的X射線衍射譜圖

    Figure  6.  XRD patterns of MOG, MOG?SA, MOG?SL, and MOG?SS

    圖  7  不同表面活性劑插層前后氧化石墨的Zeta電位

    Figure  7.  Zeta potential of MOG and MOG intercalated with different surfactants

    圖  8  十二烷胺鹽酸鹽和月桂酸鈉插層氧化石墨前后的紅外光譜譜圖

    Figure  8.  FTIR spectra of MOG、MOG?DDACl, and MOG?SL

    圖  9  C 1s的X射線光電子能譜譜圖。(a)氧化石墨;(b)氧化石墨?十二烷胺鹽酸鹽;(c)氧化石墨?月桂酸鈉

    Figure  9.  XPS spectra of C 1s: (a) MOG; (b) MOG?DDACl; (c) MOG?SL

    圖  10  十二烷胺鹽酸鹽和月桂酸鈉插層前后的氧化石墨的拉曼譜圖

    Figure  10.  Raman spectra of MOG, MOG?DDACl, and MOG?SL

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Novoselov K S, Fal'ko V I, Colombo L, et al. A roadmap for graphene. Nature, 2012, 490: 192 doi: 10.1038/nature11458
    [2] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442(7100): 282 doi: 10.1038/nature04969
    [3] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
    [4] Hu Y, Li Z, Li H Q, et al. Roles of hydrocarbon chain-length in preparing graphene oxide from mildly?oxidized graphite with intercalating anionic aliphatic surfactants. RSC Adv, 2016, 6(18): 14859 doi: 10.1039/C5RA27089H
    [5] Sun J J, Yang N X, Sun Z, et al. Fully converting graphite into graphene oxide hydrogels by preoxidation with impure manganese dioxide. ACS Appl Mater Interfaces, 2015, 7(38): 21356 doi: 10.1021/acsami.5b06008
    [6] Hong Y Z, Wang Z Y, Jin X B. Sulfuric acid intercalated graphite oxide for graphene preparation. Sci Rep, 2013, 3: 3439 doi: 10.1038/srep03439
    [7] Kim J W, Kang D, Kim T H, et al. Mosaic-like monolayer of graphene oxide sheets decorated with tetrabutylammonium ions. ACS Nano, 2013, 7(9): 8082 doi: 10.1021/nn403363s
    [8] Xu J, Dou Y, Wei Z, et al. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)?ion batteries. Adv Sci, 2017, 4(10): 1700146 doi: 10.1002/advs.201700146
    [9] Yao J, Sun L M, Gao F. Synthesis and electrochemical property of intercalary graphite/Mn3O4 composite material prepared by partial oxidation. New Chem Mater, 2016, 44(12): 40

    姚軍, 孫麗美, 高飛. 部分氧化法制備插層石墨/Mn3O4復合材料及其電化學性能研究. 化工新型材料, 2016, 44(12):40
    [10] Yao L R, Dong L, Li X J, et al. Photocatalytic performance of TiO2-intercalated graphene oxide toward methylene blue. Shanghai Textile Sci Technol, 2018, 46(11): 58

    姚理榮, 董莉, 李小娟, 等. TiO2插層氧化石墨烯降解亞甲基藍性能研究. 上海紡織科技, 2018, 46(11):58
    [11] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80(6): 1339 doi: 10.1021/ja01539a017
    [12] Hu Y, Song S X, Lopez-Valdivieso A. Effects of oxidation on the defect of reduced graphene oxides in graphene preparation. J Colloid Interface Sci, 2015, 450: 68 doi: 10.1016/j.jcis.2015.02.059
    [13] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8): 4806 doi: 10.1021/nn1006368
    [14] Pei S F, Cheng H M. The reduction of graphene oxide. Carbon, 2012, 50(9): 3210 doi: 10.1016/j.carbon.2011.11.010
    [15] Stevens J S, Byard S J, Seaton C C, et al. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid–base complexes. Phys Chem Chem Phys, 2014, 16(3): 1150 doi: 10.1039/C3CP53907E
    [16] Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett, 2008, 8(1): 36 doi: 10.1021/nl071822y
  • 加載中
圖(10)
計量
  • 文章訪問數:  1415
  • HTML全文瀏覽量:  953
  • PDF下載量:  43
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-06-03
  • 刊出日期:  2020-01-01

目錄

    /

    返回文章
    返回