<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于深度學習的人體低氧狀態識別

于露 金龍哲 王夢飛 徐明偉

于露, 金龍哲, 王夢飛, 徐明偉. 基于深度學習的人體低氧狀態識別[J]. 工程科學學報, 2019, 41(6): 817-823. doi: 10.13374/j.issn2095-9389.2019.06.014
引用本文: 于露, 金龍哲, 王夢飛, 徐明偉. 基于深度學習的人體低氧狀態識別[J]. 工程科學學報, 2019, 41(6): 817-823. doi: 10.13374/j.issn2095-9389.2019.06.014
YU Lu, JIN Long-zhe, WANG Meng-fei, XU Ming-wei. Recognition of human hypoxic state based on deep learning[J]. Chinese Journal of Engineering, 2019, 41(6): 817-823. doi: 10.13374/j.issn2095-9389.2019.06.014
Citation: YU Lu, JIN Long-zhe, WANG Meng-fei, XU Ming-wei. Recognition of human hypoxic state based on deep learning[J]. Chinese Journal of Engineering, 2019, 41(6): 817-823. doi: 10.13374/j.issn2095-9389.2019.06.014

基于深度學習的人體低氧狀態識別

doi: 10.13374/j.issn2095-9389.2019.06.014
基金項目: 

國家"十三五"重點科技支撐資助項目 2016YFC0801700

詳細信息
    通訊作者:

    金龍哲, E-mail: lzjin@ustb.edu.cn

  • 中圖分類號: X912

Recognition of human hypoxic state based on deep learning

More Information
  • 摘要: 通過低氧實驗提出一種快速識別人體低氧狀態的方法.通過搭建深層神經網絡訓練實驗數據識別氧氣體積分數(16%~21%)與人體可耐受極端低氧氣體積分數(15.5%~16%)條件下光電容積脈搏波(photoplethysmography, PPG)信號, 獲得人體生理狀態的模式識別網絡.經測試該網絡的識別正確率可達92.8%.利用混淆矩陣及接受者操作性能(receiver operating characteristic, ROC)曲線分析, 混淆矩陣的訓練集、驗證集、測試集、全集識別正確率分別達到97.9%、94.8%、92.8%和96.3%, AUC (area under curve)值接近1, 認為該網絡分類性能優良, 并且可在4 s內完成整個識別過程.

     

  • 圖  1  PPG信號測量

    Figure  1.  PPG signal measurement

    圖  2  預處理后PPG信號

    Figure  2.  PPG signal after pretreatment

    圖  3  神經網絡設置

    Figure  3.  Neural network settings

    圖  4  迭代過程圖. (a) 迭代梯度值圖; (b) 迭代檢驗圖

    Figure  4.  Iterative process diagram: (a) iterative gradient value dia-gram; (b) iterative test diagram

    圖  5  交叉熵

    Figure  5.  Cross entropy

    圖  6  分類結果混淆矩陣. (a) 訓練集; (b) 驗證集; (c) 測試集; (d) 全集

    Figure  6.  Classification result confusion matrix: (a) training set; (b) verification set; (c) test set; (d) complete set

    圖  7  ROC曲線. (a) 訓練集; (b) 驗證集; (c) 測試集; (d) 全集

    Figure  7.  Receiver operating characteristic curve: (a) training set; (b) verification set; (c) test set; (d) complete set

    圖  8  誤差直方圖

    Figure  8.  Error histogram

    表  1  神經網絡正確率

    Table  1.   Neural network correct rates ?%

    神經元數目 網絡層數
    2 3 4 5 6
    7 92.20 90.50 86.60 91.80 88.60
    8 83.35 87.30 90.80 92.80 87.30
    9 91.50 92.80 91.80 88.90 83.70
    10 88.90 91.20 90.50 91.20 92.20
    下載: 導出CSV

    表  2  AUC與準確性表

    Table  2.   AUC and accuracy

    AUC值 準確性
    0.5 ~ 0.7 較低準確性
    0.7 ~ 0.9 準確性一般
    0.9 ~ 1.0 較高準確性
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Burlet-Vienney D, Chinniah Y, Bahloul A, et al. Occupational safety during interventions in confined spaces. Safety Sci, 2015, 79: 19 doi: 10.1016/j.ssci.2015.05.003
    [2] Zang T Z, Zhang L J, Zhang L, et al. Causes and countermeasures of casualty accident induced by unexpected factors in limited job space. J Nanjing Univ Technol Nat Sci Ed, 2015, 27(3): 103 doi: 10.3969/j.issn.1671-7627.2005.03.026

    臧鐵柱, 張禮敬, 張麗, 等. 有限空間作業意外傷亡事故的成因及其對策. 南京工業大學學報(自然科學版), 2005, 27(3): 103 doi: 10.3969/j.issn.1671-7627.2005.03.026
    [3] Sun Y J, Shen H G. Industrial Ventilation. 4th Ed. Beijing: China Architecture & Building Press, 2010

    孫一堅, 沈恒根. 工業通風. 4版. 北京: 中國建筑工業出版社, 2010
    [4] Zhou X F, Yang F, Guo L, et al. Analysis and preventive recommendation of national confined space accidents due to asphyxiation and poisoning from 2014 to 2015. J Eniviron Occup Med, 2018, 35(8): 735 https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX201808013.htm

    周興藩, 楊鳳, 郭玲, 等. 2014-2015年全國有限空間作業中毒與窒息事故分析及預防建議. 環境與職業醫學, 2018, 35(8): 735 https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX201808013.htm
    [5] Mejías C, Jiménez D, Mu?oz A, et al. Clinical response of 20 people in a mining refuge: study and analysis of functional parameters. Safety Sci, 2014, 63: 204 doi: 10.1016/j.ssci.2013.11.011
    [6] Selman J, Spickett J, Jansz J, et al. An investigation into the rate and mechanism of incident of work-related confined space fatalities. Safety Sci, 2018, 109: 333 doi: 10.1016/j.ssci.2018.06.014
    [7] Li G J. Research on Human Heat Tolerance under Extreme Hot, Humid and Low-oxygen Environment[Dissertaion]. Tianjin: Tianjin University, 2008

    李國建. 高溫高濕低氧環境下人體熱耐受性研究[學位論文]. 天津: 天津大學, 2008
    [8] Kamshilin A A, Nippolainen E, Sidorov I S, et al. A new look at the essence of the imaging photoplethysmography. Sci Rep, 2015, 5: 10494 doi: 10.1038/srep10494
    [9] Shin H, Min S D. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study. Biomed Eng Online, 2017, 16(1): 10 doi: 10.1186/s12938-016-0302-y
    [10] Zhou Q, Tu H, Zuo J X. Blood oxygen saturation real-time monitoring system research based on PPG. Inform Res, 2017, 43(3): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-DZGS201703014.htm

    張強, 涂浩, 左佳鑫. 基于PPG的血氧飽和度實時監測系統研究. 信息化研究, 2017, 43(3): 75 https://www.cnki.com.cn/Article/CJFDTOTAL-DZGS201703014.htm
    [11] Njoum H, Kyriacou P A. Photoplethysmography for the assessment of haemorheology. Sci Rep, 2017, 7(1): 1406 doi: 10.1038/s41598-017-01636-0
    [12] Ma J L, Wang C, Li Z J, et al. Study of measuring heart rate and respiration rate based on PPG. Opt Tech, 2011, 37(3): 309 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201103013.htm

    馬俊領, 王成, 李章俊, 等. 基于PPG的心率和呼吸頻率的測量研究. 光學技術, 2011, 37(3): 309 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201103013.htm
    [13] Tamura T, Maeda Y, Sekine M, et al. Wearable photoplethysmographic sensors-past and present. Electronics, 2014, 3(2): 282 doi: 10.3390/electronics3020282
    [14] Khadse C B, Chaudhari M A, Borghate V B. Electromagnetic compatibility estimator using scaled conjugate gradient back-propagation based artificial neural network. IEEE Trans Ind Inform, 2017, 13(3): 1036 doi: 10.1109/TII.2016.2605623
    [15] Akhtar N, Mian A. Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access, 2018, 6: 14410 doi: 10.1109/ACCESS.2018.2807385
    [16] Razzak M I, Naz S, Zaib A. Deep learning for medical image processing: overview, challenges and the future//Classification in Bioapps: Automation of Decision Making. Springer, 2018
    [17] Wang H, Zhao Y, Xu Y M, et al. Cross-language speech attribute detection and phone recognition for Tibetan using deep learning//The 9th International Symposium on Chinese Spoken Language Processing. Singapore, 2014: 474
    [18] Hoffman J, Pathak D, Tzeng E, et al. Large scale visual recognition through adaptation using joint representation and multiple instance learning. J Mach Learn Res, 2016, 17(1): 1 doi: 10.5555/2946645.3007095
    [19] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436 doi: 10.1038/nature14539
    [20] Bronstein M M, Bruna J, LeCun Y, et al. Geometric deep learning: going beyond euclidean data. IEEE Signal Process Mag, 2017, 34(4): 18 doi: 10.1109/MSP.2017.2693418
    [21] Craig A, Tran Y, Wijesuriya N, et al. A controlled investigation into the psychological determinants of fatigue. Biol Psychol, 2006, 72(1): 78 doi: 10.1016/j.biopsycho.2005.07.005
    [22] Wang Q. Multi Objective Learning and Ensembling for Deep Neura Network Based Speech Enhancement[Dissertation]. Hefei: University of Science and Technology China, 2018

    王青. 基于深層神經網絡的多目標學習和融合的語言增強研究[學位論文]. 合肥: 中國科學技術大學, 2018
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  1018
  • HTML全文瀏覽量:  451
  • PDF下載量:  29
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-03-06
  • 刊出日期:  2019-06-01

目錄

    /

    返回文章
    返回