High-temperature wear performance and mechanism of NM400/NM500 mining machinery steels
-
摘要: 將直徑為5 mm的混合燒結Al2O3陶瓷球安裝在高溫滑動摩擦試驗機夾持工具上與耐磨鋼組成摩擦副, 研究了耐磨鋼與氧化鋁陶瓷球在200~300 N、100~400 r·min-1不同載荷下的滑動摩擦行為.結合X射線衍射分析技術和掃描電鏡等分析手段研究了NM400和NM500兩種耐磨鋼在室溫~300℃下摩擦界面處材料的氧化物形成、磨損表面形貌和顯微組織等行為.隨溫度升高, NM400和NM500的摩擦系數仍然處于0.27~0.40的范圍內, 但兩者的平均摩擦系數分別從0.337、0.323逐步降低至了0.296和0.288.在300℃時, 氧化物的產生是摩擦系數略有下降的主要原因.隨著溫度的升高, 摩擦行為首先以磨粒磨損為主, 隨后逐漸發生氧化物的壓入-剝離-氧化現象, 使磨損速率略有降低.通過高溫摩擦磨損行為與微量氧化模型的分析發現, NM400和NM500鋼在室溫至300℃的磨損機制是磨粒磨損、擠壓變形磨損以及微量氧化物磨損的共同作用.NM500鋼表現出更加良好的耐磨性能主要原因是其硬度強度高于NM400鋼.在高強微合金馬氏體耐磨鋼中添加少量合金元素, 使其在高溫摩擦過程中產生一定量穩定附著的氧化物, 在一定程度上能夠起到降低磨損率的作用.Abstract: The friction and wear behavior of NM400 and NM500 steels in the temperature range from room temperature to 300℃ were investigated, including the formation of interface oxide, wear surface morphology, and microstructures. A high-temperature sliding friction tester was used to study the behavior of sliding friction between wear-resistant steel and Al2O3 ceramic balls under different loads of 200-300 N and speeds of 100-400 r·min-1. A ball-disc friction pair containing mix-sintered Al2O3 ceramic balls with a diameter of 5 mm was mounted on the holding tool and steel plate. The friction coefficients of the two materials from room temperature to 300℃ are determined to be in a range of 0.27-0.40, whereas the average friction coefficients of NM400 and NM500 steels are found to decrease gradually from 0.337 to 0.296 and from 0.323 to 0.288. The generation of oxides is the primary reason for slight decrease in the friction coefficient at a high temperature of 300℃. The friction behavior is controlled by the abrasive wear mechanism, and then the phenomenon of pressure-into-peeling-oxidation of oxide gradually occurs at a higher temperature, which slightly reduces the wear rate. Larger amount of oxides are produced on the interface as the temperature increases, but this is not sufficient to form a continuous oxide layer. The main wear pattern at this time is still abrasive wear, although the wear rate and friction coefficient are affected by oxides. The main factors influencing the wear behavior are the hardness, oxide volume fraction, and oxidation activation energy of the wear-resistant steel, as found through the analysis of high-temperature frictional wear behavior and micro-oxidation model. In conclusion, the wear mechanisms of NM400 and NM500 steels from room temperature to 300℃ are influenced by the combined effect of abrasive wear, extrusion deformation wear, and trace oxide wear. NM500 steel exhibites better wear resistance than NM400 steel, and this can be mainly attributed to higher level of its hardness. A small amount of additional alloying elements in the high-strength microalloyed martensitic wear-resistant steel can reduce the wear rate to some extent, due to the formation of a certain amount of stable attached oxides that are produced during the high-temperature friction process.
-
Key words:
- abrasive wear /
- high-temperature wear /
- oxide wear /
- feeder /
- liner
-
表 1 NM400、NM500耐磨鋼的化學成分(質量分數)
Table 1. Chemical compositions of NM400 and NM500 wear-resist steels ?
% 合金 C Mn Si S P Cr Ti B Als Nb Ni NM400 0.23 1.20 0.25 0.007 0.10 0.25 0.015 0.0015 0.020 0.020 - NM500 0.35 1.50 0.70 0.001 0.01 1.00 0.050 0.0015 0.035 0.020 0.9 表 2 耐磨鋼的熱處理工藝及力學性能
Table 2. Heat treatment and mechanical properties of wear-resist steels
合金 抗拉強度/ MPa 屈服強度/ MPa 延伸率/% 硬度,HB NM400 1245 1084 15 45.00 NM500 1500 1300 8 53.35 259luxu-164 -
參考文獻
[1] Song R B, Feng Y F, Peng S G, et al. Research and application of high manganese steel lining plate. Mater Rev, 2015, 29(10): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201519015.htm宋仁伯, 馮一帆, 彭世廣, 等. 高錳鋼襯板的研究及應用. 材料導報, 2015, 29(10): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201519015.htm [2] Peng S G, Song R B, Wang W, et al. Effect of heat treatments on microstructure and mechanical properties of novel light-mass austenitic wear-resistant steel. J Mater Eng, 2016, 44(9): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201609005.htm彭世廣, 宋仁伯, 王威, 等. 熱處理工藝對新型輕質奧氏體耐磨鋼的組織與力學性能的影響. 材料工程, 2016, 44(9): 24 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201609005.htm [3] Xu L J, Xing J D, Wei S Z, et al. Comparative investigation to rolling wear properties between high-vanadium high-speed steel and high-chromium cast iron. J Xi'an Jiaotong Univ, 2006, 40(3): 275 doi: 10.3321/j.issn:0253-987X.2006.03.007徐流杰, 邢建東, 魏世忠, 等. 高釩高速鋼與高鉻鑄鐵的滾動磨損性能對比研究. 西安交通大學學報, 2006, 40(3): 275 doi: 10.3321/j.issn:0253-987X.2006.03.007 [4] Liu W J, Li J, Huo X D. Mechanism of strengthening and toughening for wear resistant steel NM400 with high strength and low alloy. J Iron Steel Res, 2014, 26(7): 77 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201407017.htm劉偉建, 李晶, 霍向東. 高強度低合金耐磨鋼NM400的強韌化機制. 鋼鐵研究學報, 2014, 26(7): 77 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201407017.htm [5] Cao Y. Development of NM400 Grade High Strength Low Alloy Wear-Resistant Steel and Study on Its Microstructure and Property[Dissertation]. Shenyang: Northeastern University, 2013曹藝. NM400級低合金高強度耐磨鋼的開發及其組織性能研究[學位論文]. 沈陽: 東北大學, 2013 [6] Jiang Z Q, Du J M, Feng X L. Study and application of heat treatment of multi-element wear-resistant low-alloy steel. J Iron Steel Res Int, 2006, 13(1): 57 doi: 10.1016/S1006-706X(06)60027-7 [7] Deng X T, Wang Z D, Yuan G, et al. Microstructure and mechanical properties of HB450 ultra-high strength low-alloy abrasion resistant steel. J Northeast Univ Nat Sci, 2010, 31(7): 942 doi: 10.3969/j.issn.1005-3026.2010.07.008鄧想濤, 王昭東, 袁國, 等. HB450低合金超高強耐磨鋼組織與性能. 東北大學學報(自然科學版), 2010, 31(7): 942 doi: 10.3969/j.issn.1005-3026.2010.07.008 [8] Calvo J, Jung I H, Elwazri A M, et al. Influence of the chemical composition on transformation behaviour of low carbon microalloyed steels. Mater Sci Eng A, 2009, 520(1-2): 90 doi: 10.1016/j.msea.2009.05.027 [9] Hu R R, Cai Q W, Wu H B, et al. Heat treatment influence on the microstructure and mechanical properties of NM500 wear resistant steel. J Univ Sci Technol Beijing, 2013, 35(8): 1015 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201308007.htm胡日榮, 蔡慶伍, 武會賓, 等. 熱處理工藝對NM500耐磨鋼組織和力學性能的影響. 北京科技大學學報, 2013, 35(8): 1015 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201308007.htm [10] Xu L J, Wei S Z, Xing J D, et al. Effect of hardness and impact toughness on wear stability of high-vanadium high-speed steel. Tribology, 2006, 26(4): 377 doi: 10.3321/j.issn:1004-0595.2006.04.018徐流杰, 魏世忠, 邢建東, 等. 硬度及沖擊韌性對高釩高速鋼磨損穩定性的影響. 摩擦學學報, 2006, 26(4): 377 doi: 10.3321/j.issn:1004-0595.2006.04.018 [11] Yang Z C, Xie F Q, Yao X F, et al. Effects of temperature on tribological properties of NM500 and 0Cr18Ni9Ti under dry friction and wear. Mater Rev, 2013, 27(11): 96 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201322026.htm楊忠誠, 謝發勤, 姚小飛, 等. 溫度對NM500和0Cr18Ni9Ti干摩擦磨損性能的影響. 材料導報, 2013, 27(11): 96 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201322026.htm [12] Chen K M, Zhang Q Y, Li X X, et al. Dry sliding wear behavior of TC11 alloy/GCr15 steel tribo-pair. Rare Met Mater Eng, 2015, 44(6): 1531 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201506045.htm陳康敏, 張秋陽, 李新星, 等. TC11合金/GCr15鋼摩擦副的干滑動磨損行為. 稀有金屬材料與工程, 2015, 44(6): 1531 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201506045.htm [13] Chen K M, Wang L, Wang S Q, et al. Oxidative wear behavior of H13 steel. Tribology, 2011, 31(4): 317 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201104002.htm陳康敏, 王蘭, 王樹奇, 等. H13鋼氧化磨損行為的研究. 摩擦學學報, 2011, 31(4): 317 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201104002.htm [14] Zhang Y Z. The Dry Tribology of the Material. Beijing: Science Press, 2007張永振. 材料的干摩擦學. 北京: 科學出版社, 2007 [15] Xu J C, Wang T M. Study on the processing and abrasive wearresistance of ductile cast iron with low carbon and medium manganese. Tribology, 2003, 23(2): 158 doi: 10.3321/j.issn:1004-0595.2003.02.019徐金城, 王天民. 低碳中錳抗磨球墨鑄鐵的研制及其磨粒磨損性能研究. 摩擦學學報, 2003, 23(2): 158 doi: 10.3321/j.issn:1004-0595.2003.02.019 [16] Zhang L, Zhang J, Yu Q, et al. Effect of oxide film on tribological properties at room temperature and corrosion performance of QPQ nitride layers on 14Cr12Ni2WMoVNb steel. Chin J Eng, 2017, 39(7): 1047 doi: 10.13374/j.issn2095-9389.2017.07.010張樂, 張津, 余強, 等. 氧化膜對14Cr12Ni2WMoVNb鋼QPQ滲層的室溫摩擦磨損和腐蝕性能的影響. 工程科學學報, 2017, 39(7): 1047 doi: 10.13374/j.issn2095-9389.2017.07.010 [17] Liu W, Kong D J, Wu K, et al. Effects of temperature on the friction-wear properties of 40Cr steel by warm extrusion. Chin J Eng, 2017, 39(2): 259 doi: 10.13374/j.issn2095-9389.2017.02.014劉偉, 孔德軍, 吳凱, 等. 溫度對40Cr鋼溫擠壓成形的摩擦-磨損性能影響. 工程科學學報, 2017, 39(2): 259 doi: 10.13374/j.issn2095-9389.2017.02.014 [18] Quinn T F J. Review of oxidational wear, Part Ⅰ: The origins of oxidational wear. Tribol Int, 1983, 16(5): 257 doi: 10.1016/0301-679X(83)90086-5 [19] Quinn T F J. Review of oxidational wear, Part Ⅱ: Recent developments and future trends in oxidational wear research. Tribol Int, 1983, 16(6): 305 doi: 10.1016/0301-679X(83)90039-7 [20] Batchelor A W, Stachowiak G W, Cameron A. The relationship between oxide films and the wear of steels. Wear, 1986, 113(2): 203 doi: 10.1016/0043-1648(86)90121-3 [21] Cui X H, Jiang Q C, Wang S Q. Correlation between microstructures and high-temperature wear-resistance of a new type hotforged precisely cast die steel. Tribology, 2005, 25(3): 211 doi: 10.3321/j.issn:1004-0595.2005.03.005崔向紅, 姜啟川, 王樹奇. 新型精鑄熱鍛模具鋼高溫磨損性能同其顯微組織的相關性. 摩擦學學報, 2005, 25(3): 211 doi: 10.3321/j.issn:1004-0595.2005.03.005 [22] Cui X H, Wang S Q, Jiang Q C, et al. High-temperature wear mechanism of cast hot-forging die steel 4Cr3Mo2NiV. Acta Metall Sin, 2005, 41(10): 1116 doi: 10.3321/j.issn:0412-1961.2005.10.022崔向紅, 王樹奇, 姜啟川, 等. 4Cr3Mo2NiV鑄造熱鍛模具鋼的高溫磨損機理. 金屬學報, 2005, 41(10): 1116 doi: 10.3321/j.issn:0412-1961.2005.10.022 [23] Wang F. Oxidation-delamination Wear Behavior of the Cast Hotforging Die Steels[Dissertation]. Zhenjiang: Jiangsu University, 2007王峰. 鑄造熱鍛模具鋼氧化剝層磨損行為的研究[學位論文]. 鎮江: 江蘇大學, 2007 [24] Guo J, Yang M S, Lu D H, et al. Rolling contact fatigue and wear characteristics of Cr4Mo4V bearing steel. Tribology, 2017, 37(2): 155 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201702003.htm郭軍, 楊卯生, 盧德宏, 等. Cr4Mo4V軸承鋼滾動接觸疲勞和磨損性能研究. 摩擦學學報, 2017, 37(2): 155 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201702003.htm [25] Geng Z D, Wu H B, Zhao A M, et al. Effect of Nb on the microstructure and mechanical properties of medium-carbon low-alloy wear-resistant steel. Chin J Eng, 2015, 37(7): 905 doi: 10.13374/j.issn2095-9389.2015.07.012耿志達, 武會賓, 趙愛民, 等. Nb對中碳低合金耐磨鋼組織和性能的影響. 工程科學學報, 2015, 37(7): 905 doi: 10.13374/j.issn2095-9389.2015.07.012 -