Pore structure of nano-porous thermal insulating materials and thermal transport via gas phase in their pores
-
摘要: 為研究納米隔熱材料孔隙結構內部的氣體熱傳輸特性, 采用溶膠-凝膠工藝結合超臨界干燥技術, 制備了一系列具有不同孔隙結構特征的樣品, 通過熱導率、氮氣吸-脫附和真密度測試, 全面、準確獲取了其孔隙結構信息, 并專門、系統研究了孔隙結構特征與氣體熱傳輸特性之間的關系.研究結果表明: 與氣相貢獻熱導率相對應, 材料具有雙尺度孔隙結構特征, 并且當大孔隙尺度不及小孔隙的10倍時, 可進一步等效為單尺度孔隙.考慮氣固耦合傳熱的本征氣相貢獻熱導率隨孔隙尺度的增大而升高, 與氣相熱導率變化類似且成一定的比例關系, 孔隙尺度小于200 nm和大于500 nm時的比例系數分別為2.0和1.5, 200~500 nm時則為2.0~1.5.當大、小孔隙尺度的比值不超過10時, 或者這一比值為100~1000且大孔隙含量低于10%時, 氣相貢獻熱導率隨環境氣壓的降低依次呈現快速下降、緩慢下降和無變化三個階段; 當這一比值超過3000時, 即使大孔隙含量很低(不超過10%), 氣相貢獻熱導率也會依次呈現快速下降、緩慢下降、快速下降和無變化四個階段.Abstract: The thermal insulation properties of nano-porous thermal insulating materials largely depend on thermal transport via gas phase within their pores, and this process relies on their pore structures. Therefore, investigating pore structures and thermal transport via gas phase is important to understand the heat transfer mechanism. Current research mainly focuses on the theoretical calculation and analysis from the perspective of heat transfer, and special and systematic studies based on actual materials have not been reported yet. In addition, accurate analysis of pore structures using usual techniques is difficult due to the complex pore network and the poor mechanical properties of their solid skeleton. In this study, nano-porous thermal insulating materials with different pore structures were synthesized via a sol-gel process followed by supercritical drying. The materials were then characterized by thermal conductivity tester, nitrogen adsorption-desorption, and helium pycnometer. The pore structures of the resulting materials were obtained, and the relationship between pore structures and thermal transport via gas phase was studied. Results show that the bimodal distribution of pores in the resulting materials, corresponding to gas-contributed thermal conductivity. All pores within the resulting materials can be equivalent to pores with a single diameter when the equivalent size of large pores is 10 times less than that of small pores. Similar to the pure gaseous thermal conductivity, the intrinsic gas-contributed thermal conductivity including gas-solid coupling effects rises with increasing pore diameter of the materials. The ratio of intrinsic gas-contributed thermal conductivity to pure gaseous thermal conductivity is 2.0, 1.5, and 2.0-1.5 for pores smaller than 200 nm, larger than 500 nm, and with size between 200 and 500 nm, respectively. When the equivalent size of large pores is 10 times less than that of small pores or when the equivalent size of large pores is 100-1000 times that of small pores and the contribution of large pores to the total porosity is less than 10%, the gas-contributed thermal conductivity reduction of the resulting material with decreasing gas pressure can be divided into three stages (steep decreasing stage, slow decreasing stage, and hardly changing stage) according to decreasing rate. When the equivalent size of large pores is 3000 times larger than that of small pores, the gas-contributed thermal conductivity reduction of the resulting material with decreasing gas pressure can be divided into four stages (steep decreasing stage, slow decreasing stage, steep decreasing stage, and hardly changing stage) even if the contribution of large pores to the total porosity is very low (less than 10%).
-
圖 2 納米隔熱材料氣相貢獻熱導率測試值與計算值. (a)?G1; (b)?G2; (c)?G3; (d)?G4; (e)?G5; (f)?G6; (g)?G7; (h)?G8; (i)?G9; (j)?G10
Figure 2. Measured and calculated gas-contributed thermal conductivity of nano-porous thermal insulating materials: (a)?G1; (b)?G2; (c)?G3; (d)?G4; (e)?G5; (f)?G6; (g)?G7; (h)?G8; (i)?G9; (j)?G10
圖 5 大尺度孔隙對納米隔熱材料本征氣相貢獻熱導率的影響. (a)?500 nm; (b)?5000 nm; (c)?50000 nm; (d)?150000 nm; (e)?250000 nm; (f)?350000 nm
Figure 5. Effect of large pores on intrinsic gas-contributed thermal conductivity of nano-porous thermal insulating materials: (a)?500 nm; (b)?5000 nm; (c)?50000 nm; (d)?150000 nm; (e)?250000 nm; (f)?350000 nm
表 1 納米隔熱材料的制備條件
Table 1. Synthesis condition of nano-porous thermal insulating materials
樣品 物質的量之比 催化劑濃度/(mmol·L-1) HCl AcH NH3·H2O G1 n [TMOS]: n [MeOH]: n [H2O] =1:8:4 — — 10.80 G2 n [TEOS]: n [EtOH]: n [H2O] =1:7:4 5.88 — 22.10 G3 n [TEOS]: n [EtOH]: n [H2O] =1:7:3 0.80 — 2.00 G4 n [TEOS]: n [EtOH]: n [H2O] =1:7:3 0.80 — 5.00 G5 n [TEOS]: n [EtOH]: n [H2O] =1:7:3 0.80 — 10.00 G6 n [TEOS]: n [EtOH]: n [H2O] =1:7:3 0.80 — 2.00 G7 n [TEOS]: n [EtOH]: n [H2O] =1:7:3 0.80 — 2.00 G8 n [TEOS]: n [EtOH]: n [H2O] =1:7:3 0.80 — 2.00 G9 n [TEOS]: n [EtOH]: n [H2O] =1:3.5:3 0.80 — 20.00 G10 n [TBOT]: n [EtOH] : n [H2O] =1:5:4 — 2.80 — 表 2 納米隔熱材料的物理性質
Table 2. Physical properties of nano-porous thermal insulating materials
樣品 表觀密度,ρ/(g·cm-3) 真密度,ρs/(g·cm-3) 孔隙率,?/% 理論孔體積,V/(cm3·g-1) 測試孔體積,VBJH/(cm3·g-1) 孔體積測得率,φ/% 外比表面積,Sext/(m2·g-1) 氣相貢獻熱導率,kg-c/(W·m-1·K-1) 理論平均孔隙直徑,Dc/nm 測試峰值孔徑,DBJH/nm 大尺度孔隙等效孔徑,Dg-c/nm R = Dg-c/DBJH G1 0.212 2.0759 89.79 4.24 3.87 91.38 798 0.00660 21 14 2000 143 G2 0.203 2.0830 90.25 4.45 4.25 95.59 913 0.00843 20 27 10000 370 G3 0.203 2.0041 89.87 4.43 3.48 78.61 341 0.01199 52 61 300 5 G4 0.193 1.9875 90.29 4.68 3.50 74.82 215 0.01389 88 59 300 5 G5 0.194 1.9773 90.19 4.65 0.65 13.98 87 0.01908 216 93 300 3 G6 0.269 2.0041 86.58 3.22 3.03 94.14 337 0.00955 39 58 300 5 G7 0.364 2.0041 81.84 2.25 2.20 97.85 330 0.00784 28 38 200000 5263 G8 0.419 2.0041 79.09 1.89 1.75 92.71 355 0.00729 22 27 200000 7407 G9 0.344 1.9280 82.16 2.39 0.95 39.78 48 0.02008 206 104 300 3 G10 0.369 3.5883 89.72 2.43 1.42 58.40 51 0.02345 193 106 700 7 表 3 納米隔熱材料的氣相貢獻熱導率
Table 3. Gas-contributed thermal conductivity of nano-porous thermal insulating materials
樣品 kg-cB /(W·m-1·K-1) kg-cS /(W·m-1·K-1) kg-cI /(W·m-1·K-1) kg-cIB /(W·m-1·K-1) kg-cIS /(W·m-1·K-1) G1 0.00297 0.00363 — 0.03837 0.00442 G2 0.00148 0.00695 — 0.03719 0.00806 G3 0.00465 0.00734 0.01334 0.02419 0.01039 G4 0.00447 0.00942 0.01538 0.01966 0.01394 G5 0.01540 0.00368 0.02116 0.01985 0.02919 G6 0.00137 0.00818 0.01103 0.02700 0.01004 G7 0.00067 0.00717 — 0.03808 0.00895 G8 0.00211 0.00518 — 0.03660 0.00706 G9 0.01004 0.01004 0.02444 0.02029 0.03072 G10 0.01063 0.01282 0.02614 0.02848 0.02447 259luxu-164 -
參考文獻
[1] Bouquerel M, Duforestel T, Baillis D, et al. Heat transfer modeling in vacuum insulation panels containing nanoporous silicas-a review. Energy Build, 2012, 54: 320 doi: 10.1016/j.enbuild.2012.07.034 [2] Hu Z J, Li J N, Sun C C, et al. Recent developments of nano-superinsulating materials. Mater China, 2012, 31(8): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201208009.htm胡子君, 李俊寧, 孫陳誠, 等. 納米超級隔熱材料及其最新研究進展. 中國材料進展, 2012, 31(8): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201208009.htm [3] Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation: an overview. J Sol-Gel Sci Technol, 2012, 63(3): 315 doi: 10.1007/s10971-012-2792-9 [4] Chen D P, Hou K Y, Wang L J, et al. Status and development of fire protection materials based on super thermal insulator and their application prospect in urban underground space. Chin J Eng, 2017, 39(6): 811 doi: 10.13374/j.issn2095-9389.2017.06.001陳德平, 侯柯屹, 王立佳, 等. 超級絕熱型防火材料的研究進展及其在城市地下空間的應用展望. 工程科學學報, 2017, 39(6): 811 doi: 10.13374/j.issn2095-9389.2017.06.001 [5] Hüsing N, Schubert U. Aerogels-airy materials: chemistry, structure, and properties. Angew Chem Int Ed, 1998, 37(1-2): 22 doi: 10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I [6] Qiao J H, Bolot R, Liao H L, et al. Knudsen effect on the estimation of the effective thermal conductivity of thermal barrier coatings. J Therm Spray Technol, 2013, 22(2-3): 175 doi: 10.1007/s11666-012-9878-3 [7] Spagnol S, Lartigue B, Trombe A, et al. Experimental investigations on the thermal conductivity of silica aerogels by a guarded thin-film-heater method. J Heat Transfer, 2009, 131(7): 074501-1 doi: 10.1115/1.3089547 [8] Zhu C Y, Li Z Y, Zhao X P, et al. The DSMC study on gas heat conduction in nanoscale. J Eng Thermophys, 2016, 37(5): 1027 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201605020.htm朱傳勇, 李增耀, 趙新朋, 等. 納米尺度下氣體導熱的DSMC模擬. 工程熱物理學報, 2016, 37(5): 1027 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201605020.htm [9] Swimm K, Reichenauer G, Vidi S, et al. Gas pressure dependence of the heat transport in porous solids with pores smaller than 10μm. Int J Thermophys, 2009, 30(4): 1329 doi: 10.1007/s10765-009-0617-z [10] Reichenauer G, Heinemann U, Ebert H P. Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids Surf A, 2007, 300(1-2): 204 doi: 10.1016/j.colsurfa.2007.01.020 [11] Zhang H, Li Z Y, Dan D, et al. The influence of gas pressure on the effective thermal conductivity of nano-porous material. J Eng Thermophys, 2013, 34(4): 756 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201304041.htm張虎, 李增耀, 丹聃, 等. 氣氛壓力對納米多孔材料等效熱導率的影響. 工程熱物理學報, 2013, 34(4): 756 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201304041.htm [12] Zhao J J, Duan Y Y, Wang X D, et al. Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels. J Nanopart Res, 2012, 14(8): 1024 doi: 10.1007/s11051-012-1024-0 [13] He Y L, Xie T. A review of heat transfer models of nanoporous silica aerogel insulation material. Chin Sci Bull, 2015, 60(2): 137 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201502003.htm何雅玲, 謝濤. 氣凝膠納米多孔材料傳熱計算模型研究進展. 科學通報, 2015, 60(2): 137 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201502003.htm [14] Zhu C Y, Li Z Y. The numerical study on the gas-contributed thermal conductivity of aerogel. J Eng Thermophys, 2017, 38(8): 1753 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201708027.htm朱傳勇, 李增耀. 氣凝膠中氣相貢獻熱導率的數值求解. 工程熱物理學報, 2017, 38(8): 1753 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201708027.htm [15] Coquil T, Fang J, Pilon L. Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica. Int J Heat Mass Transfer, 2011, 54(21-22): 4540 doi: 10.1016/j.ijheatmasstransfer.2011.06.024 [16] Raed K, Gross U. Modeling of influence of gas atmosphere and pore-size distribution on the effective thermal conductivity of knudsen and non-knudsen porous materials. Int J Thermophys, 2009, 30(4): 1343 doi: 10.1007/s10765-009-0600-8 [17] Yang H L, Wang X T, Wang Q, et al. Study on mercury porosimetry and gas sorption for pore structure characterization of nano-porous super thermal insulating materials. Acta Mater Compos Sin, 2013, 30(Suppl): 273 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1052.htm楊海龍, 王曉婷, 王欽, 等. 壓汞和氣體吸附在納米超級隔熱材料孔隙結構表征中的應用研究. 復合材料學報, 2013, 30(增刊): 273 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1052.htm [18] Pirard R, Rigacci A, Marechal J C, et al. Characterization of hyperporous polyurethane-based gels by non-intrusive mercury porosimetry. Polymer, 2003, 44(17): 4881 doi: 10.1016/S0032-3861(03)00481-6 [19] Pirard R, Alie C, Pirard J P. Characterization of porous texture of hyperporous materials by mercury porosimetry using densification equation. Powder Technol, 2002, 128(2-3): 242 doi: 10.1016/S0032-5910(02)00185-7 [20] Alie C, Pirard R, Pirard J P. Mercury porosimetry: applicability of the bucking-intrusion mechanism to low-density xerogels. J Non-Cryst Solids, 2001, 292(1-3): 138 doi: 10.1016/S0022-3093(01)00881-X [21] Wiener M, Reichenauer G, Braxmeier S, et al. Carbon aerogelbased high-temperature thermal insulation. Int J Thermophys, 2009, 30(4): 1372 doi: 10.1007/s10765-009-0595-1 [22] Bi C, Tang G H. Study of coupling heat transfer between solid and gas phases in nanoporous aerogel. J Eng Thermophys, 2015, 36(6): 1315 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201506032.htm畢成, 唐桂華. 多孔材料氣凝膠氣固耦合傳熱研究. 工程熱物理學報, 2015, 36(6): 1315 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201506032.htm [23] Zhao J J, Yu H T, Duan Y Y, et al. Analysis of aerogel thermal conductivity based on the microstructure. J Eng Thermophys, 2013, 34(10): 1926 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201310031.htm趙俊杰, 于海童, 段遠源, 等. 基于微觀結構的氣凝膠熱導率分析. 工程熱物理學報, 2013, 34(10): 1926 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201310031.htm [24] Zhao J J, Duan Y Y, Wang X D, et al. A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure. J Non-Cryst Solids, 2012, 358(10): 1287 doi: 10.1016/j.jnoncrysol.2012.02.035 [25] Li Z Y, Zhu C Y, Zhao X P. A theoretical and numerical study on the gas-contributed thermal conductivity in aerogel. Int J Heat Mass Transfer, 2017, 108: 1982 doi: 10.1016/j.ijheatmasstransfer.2017.01.051 [26] Bi C, Tang G H, Hu Z J, et al. Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation. Int J Heat Mass Transfer, 2014, 79: 126 doi: 10.1016/j.ijheatmasstransfer.2014.07.098 [27] Lee O J, Lee K H, Yim T J, et al. Determination of mesopore size of aerogels from thermal conductivity measurements. J NonCryst Solids, 2002, 298(2-3): 287 doi: 10.1016/S0022-3093(01)01041-9 [28] Tamon H, Kitamura T, Okazaki M. Preparation of silica aerogel from TEOS. J Colloid Interface Sci, 1998, 197(2): 353 doi: 10.1006/jcis.1997.5269 [29] Swimm K, Vidi S, Reichenauer G, et al. Coupling of gaseous and solid thermal conduction in porous solids. J Non-Cryst Solids, 2017, 456: 114 doi: 10.1016/j.jnoncrysol.2016.11.012 -