Effects of abutment-implant combinations with different elastic moduli on osteogenic performance
-
摘要: 利用有限元分析軟件計算了不同靜力作用下的多種基臺-種植體周圍骨組織的應力分布.模擬結果顯示, 基臺-種植體組合中Ti6Al4V鈦合金-聚醚醚酮(TC4-PEEK)相對于其他實驗組其應力集中程度現象可以有效降低, 周圍骨組織的應力分布較為均勻, 最大應力值為40~60 MPa.在軸向加載條件下, 不同基臺-種植體系統中PEEK種植體的應力水平較小, 而周圍骨組織應力水平較大; 在斜向45°加載條件下, 相對于其他兩種基臺-種植體系統, TC4-PEEK的應力水平更低, 其周圍骨組織中的皮質骨承受的最大應力值為55 MPa, 松質骨承受的最大應力值為5 MPa, 綜合來看的應力水平最小, 有助于骨沉積和成骨量增加, 從而有效提高種植體的界面穩定性.Abstract: Many factors affect the success of dental implant surgery, such as surgical trauma, excessive chewing pressure, material performance mismatch, and improper abutment-implant connection. Among these factors, stress shielding caused by the mismatch of elastic modulus of the material is a major problem affecting the biomechanical compatibility of the implant. Also, the elastic modulus of the dental implant directly affects its binding to the surrounding support bone and stress distribution. Presently, most of the abutmentimplant systems on the market use the same material, with TC4 being popular because of its good biocompatibility. However, the elastic modulus of titanium implants is quite different from that of surrounding bone tissue; this difference can cause stress shielding. Additionally, stress concentration may cause implant surgery to fail. The abutment-implant with materials of different elastic modulus directly affect the stability and stress distribution of the bone tissue around the implant; thus, understanding the stress distribution under loading will help to establish a better elastic modulus combination of the dental implant system. In this paper, finite element analysis software was used to calculate the stress distribution of various abutments-implants under different loading conditions. Compared to other experimental abutment-implant systems, the simulation results show that Ti6Al4V abutment-(poly-ether-ether-ketone) (TC4-PEEK) can effectively reduce stress concentration, resulting in uniform stress distribution of surrounding bone tissue whose maximum stress value is 40-60 MPa. The stress level of PEEK implants in different abutment-implant systems is smaller under axial loading condition, whereas the stress level of surrounding bone tissue is larger. In the oblique direction of 45° loading condition, compared to two other abutment-implant systems, the stress level of the TC4-PEEK is lower, and the maximum stress value of the cortical and the cancellous bones in the surrounding bone tissue is 55 and 5 MPa, respectively, and the stress level is the smallest; such conditions contribute to the increase of bone deposition and bone formation, effectively improving the interface stability of the implant.
-
Key words:
- elastic modulus /
- dental implant /
- poly-ether-ether-ketone /
- abutment /
- stress distribution
-
表 1 種植牙-支撐骨組織模型各部分接觸類型
Table 1. Contact type of each part of the dental implant-supporting bone tissue model
連接對 接觸類型 基臺/中央螺絲 綁定 基臺/種植體 摩擦接觸 中央螺絲/種植體 摩擦接觸 種植體/周圍骨組織 綁定 皮質骨/松質骨 綁定(Tie) 表 2 種植牙-支撐骨模型各部分材料屬性
Table 2. Material properties of each part of the implant-support bone model
材料 彈性模量,E /MPa 泊松比,v 鈦合金TC4 110000 0.33 PEEK 4100 0.40 皮質骨 13400 0.30 松質骨 1370 0.31 表 3 種植牙各部件的材料類型
Table 3. Material type of each part of the dental implant
試樣組合 基臺 中央螺絲 種植體 A TC4 TC4 TC4 B PEEK PEEK PEEK C TC4 TC4 PEEK 表 4 軸向靜力加載100 N種植體的最大應力值
Table 4. Maximum stress value of implants with axial load of 100 N ?
MPa 試樣組和 基臺 種植體 皮質骨 松質骨 A 24 24 8 3 B 21 8 10 3 C 22 9 13 3 表 5 斜向靜力加載100 N種植體的最大應力值
Table 5. Maximum stress value of implants with oblique load of 100 N ?
MPa 試樣組和 基臺 種植體 皮質骨 松質骨 A 100 117 74 12 B 84 20 120 5 C 88 11 55 5 259luxu-164 -
參考文獻
[1] Oh T J, Yoon J, Misch C E, et al. The causes of early implant bone loss: myth or science? J Periodontol, 2002, 73(3): 322 doi: 10.1902/jop.2002.73.3.322 [2] Lin Y. Current dental implant design and its clinical importance. West China J Stomatol, 2017, 35(1): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-HXKQ201701005.htm林野. 當代牙種植體設計進步與臨床意義. 華西口腔醫學雜志, 2017, 35(1): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-HXKQ201701005.htm [3] Guan H L, Van Staden R C, Loo Y C, et al. Evaluation of multiple implant bone parameters on stress characteristics in the mandible under traumatic loading conditions. Int J Oral Maxillofac Impl, 2010, 25(3): 461 http://www.ncbi.nlm.nih.gov/pubmed/20556244 [4] Pérez-Pevida E, Brizuela-Velasco A, Chávarri-Prado D, et al. Biomechanical consequences of the elastic properties of dental implant alloys on the supporting bone: finite element analysis. BioMed Res Int, 2016, 2016: 1850401 http://downloads.hindawi.com/journals/bmri/aip/1850401.pdf [5] Lin C L, Chang S H, Wang J C. Finite element analysis of biomechanical interactions of a tooth-implant splinting system for various bone qualities. Chang Gung Med J, 2006, 29(2): 143 http://europepmc.org/abstract/med/16767962 [6] Schwitalla A D, Abou-Emara M, Spintig T, et al. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech, 2015, 48(1): 1 doi: 10.1016/j.jbiomech.2014.11.017 [7] Lacefield W R. Material characteristics of uncoated/ceramic-coated implant materials. Adv Dent Res, 1999, 13(1): 21 doi: 10.1177/08959374990130011001 [8] Bodic F, Amouriq Y, Gayet-Delacroix M, et al. Relationships between bone mass and micro-architecture at the mandible and iliac bone in edentulous subjects: a dual X-ray absorptiometry, computerised tomography and microcomputed tomography study. Gerodontology, 2012, 29(2): e585 doi: 10.1111/j.1741-2358.2011.00527.x [9] Jaffee R I. The physical metallurgy of titanium alloys. Prog Met Phys, 1958, 7: 65 doi: 10.1016/0502-8205(58)90004-2 [10] Macedo J P, Pereira J, Faria J, et al. Finite element analysis of stress extent at peri-implant bone surrounding external hexagon or Morse taper implants. J Mech Behav Biomed Mater, 2017, 71: 441 doi: 10.1016/j.jmbbm.2017.03.011 [11] Cook S D, Rust-Dawicki A M. Preliminary evaluation of titanium-coated PEEK dental implants. J Oral Implantol, 1995, 21(3): 176 http://europepmc.org/abstract/med/8699511 [12] Corvelli A A, Biermann P J, Roberts J C. Design, analysis, and fabrication of a composite segmental bone replacement implant. J Adv Mater, 1997, 28(3): 2 http://www.researchgate.net/publication/288531057_Design_analysis_and_fabrication_of_a_composite_segmental_bone_replacement_implant [13] Kurtz S M, Devine J N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28(32): 4845 doi: 10.1016/j.biomaterials.2007.07.013 [14] Han C M, Lee E J, Kim H E, et al. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials, 2010, 31(13): 3465 doi: 10.1016/j.biomaterials.2009.12.030 [15] Strecha J, Jurkovic R, Siebert T, et al. Fixed bicortical screw and blade implants as a non-standard solution to an edentulous (toothless) mandible. Int J Oral Sci, 2010, 2: 105 doi: 10.4248/IJOS10030 [16] Nissan J, Ghelfan O, Gross O, et al. The effect of crown/implant ratio and crown height space on stress distribution in unsplinted implant supporting restorations. J Oral Maxillofac Surg, 2011, 69(7): 1934 doi: 10.1016/j.joms.2011.01.036 [17] Wang M Q, He S G. Oral Anatomy and Physiology. 6th Ed. Beijing: People's Medical Publishing House, 2012王美青, 何三綱. 口腔解剖生理學. 6版. 北京: 人民衛生出版社, 2012 [18] Frost H M. A 2003 update of bone physiology and Wolff's law for clinicians. Angle Orthodontist, 2004, 74(1): 3 http://europepmc.org/abstract/med/15038485 [19] Schwitalla A D, Spintig T, Kallage I, et al. Pressure behavior of different PEEK materials for dental implants. J Mech Behav Biomed Mater, 2016, 54: 295 doi: 10.1016/j.jmbbm.2015.10.003 [20] Schwitalla A D, Spintig T, Kallage I, et al. Flexural behavior of PEEK materials for dental application. Dent Mater, 2015, 31(11): 1377 doi: 10.1016/j.dental.2015.08.151 [21] Sampaio M, Buciumaeanu M, Henriques B, et al. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental application. J Mech Behav Biomed Mater, 2016, 60: 212 doi: 10.1016/j.jmbbm.2015.12.038 [22] Watari F, Yokoyama A, Omori M, et al. Biocompatibility of materials and development to functionally graded implant for biomedical application. Compos Sci Technol, 2004, 64(6): 893 doi: 10.1016/j.compscitech.2003.09.005 -