<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

不同彈性模量的基臺-種植體組合對周圍成骨性能的影響

林逸凌 邢輝 董安平 佘歡 杜大帆 許浩 汪東紅 黃海軍 疏達 祝國梁 孫寶德

林逸凌, 邢輝, 董安平, 佘歡, 杜大帆, 許浩, 汪東紅, 黃海軍, 疏達, 祝國梁, 孫寶德. 不同彈性模量的基臺-種植體組合對周圍成骨性能的影響[J]. 工程科學學報, 2019, 41(6): 781-787. doi: 10.13374/j.issn2095-9389.2019.06.010
引用本文: 林逸凌, 邢輝, 董安平, 佘歡, 杜大帆, 許浩, 汪東紅, 黃海軍, 疏達, 祝國梁, 孫寶德. 不同彈性模量的基臺-種植體組合對周圍成骨性能的影響[J]. 工程科學學報, 2019, 41(6): 781-787. doi: 10.13374/j.issn2095-9389.2019.06.010
LIN Yi-ling, XING Hui, DONG An-ping, SHE Huan, DU Da-fan, XU Hao, WANG Dong-hong, HUANG Haijun, SHU Da, ZHU Guo-liang, SUN Bao-de. Effects of abutment-implant combinations with different elastic moduli on osteogenic performance[J]. Chinese Journal of Engineering, 2019, 41(6): 781-787. doi: 10.13374/j.issn2095-9389.2019.06.010
Citation: LIN Yi-ling, XING Hui, DONG An-ping, SHE Huan, DU Da-fan, XU Hao, WANG Dong-hong, HUANG Haijun, SHU Da, ZHU Guo-liang, SUN Bao-de. Effects of abutment-implant combinations with different elastic moduli on osteogenic performance[J]. Chinese Journal of Engineering, 2019, 41(6): 781-787. doi: 10.13374/j.issn2095-9389.2019.06.010

不同彈性模量的基臺-種植體組合對周圍成骨性能的影響

doi: 10.13374/j.issn2095-9389.2019.06.010
基金項目: 

國家自然科學基金資助項目 51831011

國家自然科學基金資助項目 51871152

詳細信息
    通訊作者:

    DONG An-ping, E-mail: apdong@sjtu.edu.cn

  • 中圖分類號: TG146.2

Effects of abutment-implant combinations with different elastic moduli on osteogenic performance

  • 摘要: 利用有限元分析軟件計算了不同靜力作用下的多種基臺-種植體周圍骨組織的應力分布.模擬結果顯示, 基臺-種植體組合中Ti6Al4V鈦合金-聚醚醚酮(TC4-PEEK)相對于其他實驗組其應力集中程度現象可以有效降低, 周圍骨組織的應力分布較為均勻, 最大應力值為40~60 MPa.在軸向加載條件下, 不同基臺-種植體系統中PEEK種植體的應力水平較小, 而周圍骨組織應力水平較大; 在斜向45°加載條件下, 相對于其他兩種基臺-種植體系統, TC4-PEEK的應力水平更低, 其周圍骨組織中的皮質骨承受的最大應力值為55 MPa, 松質骨承受的最大應力值為5 MPa, 綜合來看的應力水平最小, 有助于骨沉積和成骨量增加, 從而有效提高種植體的界面穩定性.

     

  • 圖  1  種植牙-支撐骨組織(a)、三維幾何模型(b) 及內部構造(c)

    Figure  1.  Dental implant-supporting bone tissue (a), three-dimensional geometric model (b) and its internal structure (c)

    圖  2  支撐骨組織模型(a)、(b) 和牙種植體模型(c) (單位: mm)

    Figure  2.  Supporting bone tissue model (a) and (b) and dental implant model (c) (unit: mm)

    圖  3  種植牙-支撐骨組織模型網格劃分情況

    Figure  3.  Mesh distribution of the dental implant-supporting bone tis-sue model

    圖  4  種植體的兩種靜力加載條件

    Figure  4.  Two types of loading conditions of the dental implant

    圖  5  軸向加載和斜向加載不同種植體組合的應力分布云圖. (a, d) A; (b, e) B; (c, f) C

    Figure  5.  Stress distribution of dental implant under axial and oblique loading for different abutment-implant systems: (a, d) A; (b, e) B; (c, f) C

    圖  6  軸向加載和斜向加載不同種植體組合周圍骨應力分布云圖. (a, b) A; (c, d) B; (e, f) C

    Figure  6.  Stress distribution of the surrounding bone tissue under axial and oblique loading for different abutment-implant systems: (a, b) A; (c, d) B; (e, f) C

    圖  7  軸向(a) 與斜向(b) 加載不同類型基臺-種植體及周圍骨最大應力對比

    Figure  7.  Comparison of the maximum stresses of different types of abutment-implants and the surrounding bone tissue under axial (a) and oblique (b) loading

    表  1  種植牙-支撐骨組織模型各部分接觸類型

    Table  1.   Contact type of each part of the dental implant-supporting bone tissue model

    連接對 接觸類型
    基臺/中央螺絲 綁定
    基臺/種植體 摩擦接觸
    中央螺絲/種植體 摩擦接觸
    種植體/周圍骨組織 綁定
    皮質骨/松質骨 綁定(Tie)
    下載: 導出CSV

    表  2  種植牙-支撐骨模型各部分材料屬性

    Table  2.   Material properties of each part of the implant-support bone model

    材料 彈性模量,E /MPa 泊松比,v
    鈦合金TC4 110000 0.33
    PEEK 4100 0.40
    皮質骨 13400 0.30
    松質骨 1370 0.31
    下載: 導出CSV

    表  3  種植牙各部件的材料類型

    Table  3.   Material type of each part of the dental implant

    試樣組合 基臺 中央螺絲 種植體
    A TC4 TC4 TC4
    B PEEK PEEK PEEK
    C TC4 TC4 PEEK
    下載: 導出CSV

    表  4  軸向靜力加載100 N種植體的最大應力值

    Table  4.   Maximum stress value of implants with axial load of 100 N ?MPa

    試樣組和 基臺 種植體 皮質骨 松質骨
    A 24 24 8 3
    B 21 8 10 3
    C 22 9 13 3
    下載: 導出CSV

    表  5  斜向靜力加載100 N種植體的最大應力值

    Table  5.   Maximum stress value of implants with oblique load of 100 N ?MPa

    試樣組和 基臺 種植體 皮質骨 松質骨
    A 100 117 74 12
    B 84 20 120 5
    C 88 11 55 5
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Oh T J, Yoon J, Misch C E, et al. The causes of early implant bone loss: myth or science? J Periodontol, 2002, 73(3): 322 doi: 10.1902/jop.2002.73.3.322
    [2] Lin Y. Current dental implant design and its clinical importance. West China J Stomatol, 2017, 35(1): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-HXKQ201701005.htm

    林野. 當代牙種植體設計進步與臨床意義. 華西口腔醫學雜志, 2017, 35(1): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-HXKQ201701005.htm
    [3] Guan H L, Van Staden R C, Loo Y C, et al. Evaluation of multiple implant bone parameters on stress characteristics in the mandible under traumatic loading conditions. Int J Oral Maxillofac Impl, 2010, 25(3): 461 http://www.ncbi.nlm.nih.gov/pubmed/20556244
    [4] Pérez-Pevida E, Brizuela-Velasco A, Chávarri-Prado D, et al. Biomechanical consequences of the elastic properties of dental implant alloys on the supporting bone: finite element analysis. BioMed Res Int, 2016, 2016: 1850401 http://downloads.hindawi.com/journals/bmri/aip/1850401.pdf
    [5] Lin C L, Chang S H, Wang J C. Finite element analysis of biomechanical interactions of a tooth-implant splinting system for various bone qualities. Chang Gung Med J, 2006, 29(2): 143 http://europepmc.org/abstract/med/16767962
    [6] Schwitalla A D, Abou-Emara M, Spintig T, et al. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech, 2015, 48(1): 1 doi: 10.1016/j.jbiomech.2014.11.017
    [7] Lacefield W R. Material characteristics of uncoated/ceramic-coated implant materials. Adv Dent Res, 1999, 13(1): 21 doi: 10.1177/08959374990130011001
    [8] Bodic F, Amouriq Y, Gayet-Delacroix M, et al. Relationships between bone mass and micro-architecture at the mandible and iliac bone in edentulous subjects: a dual X-ray absorptiometry, computerised tomography and microcomputed tomography study. Gerodontology, 2012, 29(2): e585 doi: 10.1111/j.1741-2358.2011.00527.x
    [9] Jaffee R I. The physical metallurgy of titanium alloys. Prog Met Phys, 1958, 7: 65 doi: 10.1016/0502-8205(58)90004-2
    [10] Macedo J P, Pereira J, Faria J, et al. Finite element analysis of stress extent at peri-implant bone surrounding external hexagon or Morse taper implants. J Mech Behav Biomed Mater, 2017, 71: 441 doi: 10.1016/j.jmbbm.2017.03.011
    [11] Cook S D, Rust-Dawicki A M. Preliminary evaluation of titanium-coated PEEK dental implants. J Oral Implantol, 1995, 21(3): 176 http://europepmc.org/abstract/med/8699511
    [12] Corvelli A A, Biermann P J, Roberts J C. Design, analysis, and fabrication of a composite segmental bone replacement implant. J Adv Mater, 1997, 28(3): 2 http://www.researchgate.net/publication/288531057_Design_analysis_and_fabrication_of_a_composite_segmental_bone_replacement_implant
    [13] Kurtz S M, Devine J N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28(32): 4845 doi: 10.1016/j.biomaterials.2007.07.013
    [14] Han C M, Lee E J, Kim H E, et al. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials, 2010, 31(13): 3465 doi: 10.1016/j.biomaterials.2009.12.030
    [15] Strecha J, Jurkovic R, Siebert T, et al. Fixed bicortical screw and blade implants as a non-standard solution to an edentulous (toothless) mandible. Int J Oral Sci, 2010, 2: 105 doi: 10.4248/IJOS10030
    [16] Nissan J, Ghelfan O, Gross O, et al. The effect of crown/implant ratio and crown height space on stress distribution in unsplinted implant supporting restorations. J Oral Maxillofac Surg, 2011, 69(7): 1934 doi: 10.1016/j.joms.2011.01.036
    [17] Wang M Q, He S G. Oral Anatomy and Physiology. 6th Ed. Beijing: People's Medical Publishing House, 2012

    王美青, 何三綱. 口腔解剖生理學. 6版. 北京: 人民衛生出版社, 2012
    [18] Frost H M. A 2003 update of bone physiology and Wolff's law for clinicians. Angle Orthodontist, 2004, 74(1): 3 http://europepmc.org/abstract/med/15038485
    [19] Schwitalla A D, Spintig T, Kallage I, et al. Pressure behavior of different PEEK materials for dental implants. J Mech Behav Biomed Mater, 2016, 54: 295 doi: 10.1016/j.jmbbm.2015.10.003
    [20] Schwitalla A D, Spintig T, Kallage I, et al. Flexural behavior of PEEK materials for dental application. Dent Mater, 2015, 31(11): 1377 doi: 10.1016/j.dental.2015.08.151
    [21] Sampaio M, Buciumaeanu M, Henriques B, et al. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental application. J Mech Behav Biomed Mater, 2016, 60: 212 doi: 10.1016/j.jmbbm.2015.12.038
    [22] Watari F, Yokoyama A, Omori M, et al. Biocompatibility of materials and development to functionally graded implant for biomedical application. Compos Sci Technol, 2004, 64(6): 893 doi: 10.1016/j.compscitech.2003.09.005
  • 加載中
圖(7) / 表(5)
計量
  • 文章訪問數:  1155
  • HTML全文瀏覽量:  535
  • PDF下載量:  17
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-06-04
  • 刊出日期:  2019-06-01

目錄

    /

    返回文章
    返回