Effect of rare earth and magnesium complex treatment on inclusions in GCr15 bearing steel
-
摘要: 為了盡可能的去除鋼中大顆粒的夾雜物, 在實驗條件下通過向GCr15軸承鋼中添加適量鎂、稀土對夾雜物進行改性, 并利用Aspex夾雜物自動分析儀和掃描電鏡對鋼中改性后的夾雜物尺寸、類型、形貌等進行了觀察、分析, 研究了稀土-鎂復合處理對夾雜物的影響規律.研究結果表明, 對軸承鋼中加入微量鎂處理, 可將未進行鎂處理鋼中的MnS-Al2O3、MnS、Al2O3夾雜改性為以含硫、鎂復合夾雜物為主, 同時包含少量Al2O3、鎂鋁尖晶石夾雜.進一步采用稀土-鎂復合處理后, 鋼中的夾雜物轉變為主要以含Re-S-O夾雜物為主, Al2O3、MnS、鎂鋁尖晶石夾雜逐步消失, 且夾雜物成球狀分布, 絕大多數夾雜物在5 μm以下.稀土-鎂復合處理軸承鋼后, 10 μm以上的大顆粒夾雜物大大降低, 鋼中的夾雜物明顯得到細化.鋼中鎂含量不變時, 隨著稀土含量的增加, 大顆粒夾雜物比例明顯下降.而在稀土含量相近的情況下, 增加鋼中的鎂含量也有利于大顆粒夾雜物的去除.稀土-鎂的相互作用進一步促進了夾雜物的細化.Abstract: Bearing steel has very strict requirements on the size, shape, and quantity of non-metallic inclusions. Even if the total oxygen content in steel is kept at very low levels, large inclusions are not completely removed. These large inclusions have a decisive effect on the fatigue life of bearing steel. To remove the large inclusions in the bearing steel as much as possible, the effect of rare earth and magnesium duplex treatment on inclusions in GCr15 bearing steel was investigated by adding moderate rare earth and magnesium to liquid steel under experimental conditions. The size, composition, and morphology of the inclusions were observed by combining Aspex inclusion automatic analysis technology and scanning electron microscope. The experimental results show that the inclusions in steel before modification are mainly composed of MnS-Al2O3, MnS, and Al2O3, and the inclusions are modified to be composed of a large number of compound inclusions containing sulfur and magnesium and a small amount of Al2O3 and magnesia alumina spinel after adding trace magnesium to steel. After complex treatment by rare earth and magnesium, the inclusions are mainly composed of Re-O-S. Al2O3, MnS, and magnesia alumina spinel vanish gradually. The inclusions are spherically distributed, and most of them have diameter less than 5 μm. Inclusions with diameters greater than 10 μm are greatly reduced. Thus, the inclusions in GCr15 bearing steel are obviously refined after rare earth and magnesium complex treatment. When the magnesium content in the steel remains unchanged, the proportion of large particle inclusions decreases with increasing content of rare earth. When the content of rare earth is similar, increasing the magnesium content in steel is beneficial to the removal of large particle inclusions. The interaction of rare earth and magnesium further promotes the refinement of inclusions.
-
Key words:
- bearing steel /
- rare earth /
- magnesium /
- inclusions /
- clean steel
-
圖 5 稀土-鎂復合處理后的夾雜物形貌. (a) w (Mg) =7×10-6; (b) w (Mg) =3.4×10-5; (c) w (Re) =0.0237%, w (Mg) =1.0×10-5; (d) w (Re) =0.0401%, w (Mg) =3.1×10-5
Figure 5. Morphology of typical inclusions in steel with rare earth and magnesium complex treatment: (a) w (Mg) =7×10-6; (b) w (Mg) =3.4×10-5; (c) w (Re) =0.0237%, w (Mg) =1.0×10-5; (d) w (Re) =0.0401%, w (Mg) =3.1×10-5
表 1 稀土-鎂處理軸承鋼的化學成分(質量分數)
Table 1. Chemical composition of bearing steel containing different rare earth and magnesium contents ?
% 試樣編號 C Si Mn Cr Ce La 稀土 w(Mg) /10-6 1# 0.96 0.261 0.337 1.436 0.019 0.0047 0.0237 10 2# 0.95 0.294 0.364 1.468 0.037 0.0050 0.0424 16 3# 0.98 0.251 0.329 1.467 0.011 0.0060 0.0170 17 4# 0.95 0.332 0.371 1.462 0.057 0.0097 0.0667 25 5# 0.95 0.266 0.315 1.484 0.023 0.0171 0.0401 31 6# 0.98 0.301 0.340 1.416 0.069 0.0218 0.0908 34 7# 1.01 0.291 0.380 1.555 ― ― ― 7 8# 1.01 0.266 0.354 1.449 ― ― ― 34 表 2 稀土-鎂處理后鋼中不同尺寸夾雜物的占比
Table 2. Statistical results of different size inclusions in the rare earth and magnesium treatment sample ?
% 試樣編號 3 ~ 5 μm 5 ~ 10 μm >10 μm 1# 68.16 31.31 0.53 2# 73.66 25.35 0.99 3# 71.60 27.50 0.90 4# 73.17 26.37 0.46 5# 84.53 15.12 0.35 6# 90.35 9.41 0.18 7# 63.28 30.77 5.95 8# 79.57 17.43 3.00 表 3 稀土-鎂處理后鋼中各類夾雜物所占比
Table 3. Percentage of various types of inclusions with rare earth and magnesium complex treatment ?
Percentage of various types of inclusions with rare earth and magnesium complex treatment 試樣編號 Al-Mg-S-Mn-O MnS MnS-MgS Ce-La-S-Mg-O Ce-La-S-Mn-O Ce-La-S-O 1# 23.97 55.81 0.54 2.33 12.34 0.89 2# 17.23 20.79 4.95 14.46 25.15 10.10 6# 0.67 0 0 0.88 10.90 87.33 表 4 鎂處理鋼中各類夾雜物所占比
Table 4. Percentage of various types of inclusions using magnesium complex treatment ?
% 試樣編號 Al-O Al-Mg-O Al-Mn-S-O Al-Mg-O-Mn-S MnS MnS-MgS 7# 0.73 1.45 26.99 44.85 24.53 0.44 8# 0.60 0.48 2.64 54.98 16.69 20.76 259luxu-164 -
參考文獻
[1] Liu Z Z, Cai K K. Purity steel production technology. Iron Steel, 2000, 35(2): 64 doi: 10.3321/j.issn:0449-749X.2000.02.017劉中柱, 蔡開科. 純凈鋼生產技術. 鋼鐵, 2000, 35(2): 64 doi: 10.3321/j.issn:0449-749X.2000.02.017 [2] Li Y D, Yang Z G, Li S X, et al. Correlations between very high cycle fatigue properties and inclusions of GCr15 bearing steel. Acta Metall Sin, 2008, 44(8): 968 doi: 10.3321/j.issn:0412-1961.2008.08.014李永德, 楊振國, 李守新, 等. GCr15軸承鋼超高周疲勞性能與夾雜物相關性. 金屬學報, 2008, 44(8): 968 doi: 10.3321/j.issn:0412-1961.2008.08.014 [3] Zhang J M, Zhang J F, Yang Z G, et al. Estimation of maximum inclusion size and fatigue strength in high strength steel. Acta Metall Sin, 2004, 40(8): 846 doi: 10.3321/j.issn:0412-1961.2004.08.012張繼明, 張建鋒, 楊振國, 等. 高強鋼中最大夾雜物的尺寸估計與疲勞強度預測. 金屬學報, 2004, 40(8): 846 doi: 10.3321/j.issn:0412-1961.2004.08.012 [4] Chang L Z, Shi X F, Wang J J, et al. Effect of ultrasonic power on distribution of Al2O3 inclusions in ESR ingots. Chin J Process Eng, 2015, 15(1): 79 https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201501014.htm常立忠, 施曉芳, 王建軍, 等. 超聲波功率對電渣鋼錠中氧化鋁夾雜物分布的影響. 過程工程學報, 2015, 15(1): 79 https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201501014.htm [5] Wang H, Li J, Wang L L. Inclusion modification of magnesium treatment in H13 die steel. China Sciencepaper, 2014, 9(2): 175 doi: 10.3969/j.issn.2095-2783.2014.02.009王昊, 李晶, 王亮亮. 鎂對H13模具鋼中夾雜物變性的影響. 中國科技論文, 2014, 9(2): 175 doi: 10.3969/j.issn.2095-2783.2014.02.009 [6] Wand D Y, Xu Z, Qu T P. Effect of Mg addition on inclusions and solidification structure in low carbon microalloy steels. Steelmaking, 2017, 33(5): 12 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201705003.htm王德永, 徐周, 屈天鵬. 鎂處理對低碳微合金鋼中夾雜物和凝固組織的影響. 煉鋼, 2017, 33(5): 12 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201705003.htm [7] Zheng W, Liu L, Li G Q, et al. Refinement mechanisms of inclusions in steel by Ti-Mg complex deoxidation. Chin J Eng, 2015, 37(7): 873 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201507008.htm鄭萬, 劉磊, 李光強, 等. Ti-Mg復合脫氧鋼中夾雜物細化機制. 工程科學學報, 2015, 37(7): 873 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201507008.htm [8] Zheng W, Wu Z H, Li G Q, et al. Effects of Ti-Mg complex deoxidation and sulfur content on the characteristics of inclusions and the precipitation behavior of MnS. Chin J Eng, 2015, 37(3): 292 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201503005.htm鄭萬, 吳振華, 李光強, 等. Ti-Mg復合脫氧和硫含量對鋼中夾雜物特征及MnS析出行為的影響. 工程科學學報, 2015, 37(3): 292 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201503005.htm [9] Zhang T S, Wang D Y, Zhang Y Q, et al. Dynamic evolution of inclusions in Al-Mg deoxidation melts. J Northeast Univ Nat Sci, 2014, 35(9): 1270 doi: 10.3969/j.issn.1005-3026.2014.09.013張同生, 王德永, 張永啟, 等. 鋁、鎂脫氧鋼中夾雜物的動態演變規律. 東北大學學報(自然科學版), 2014, 35(9): 1270 doi: 10.3969/j.issn.1005-3026.2014.09.013 [10] Chen B, Bao S R N, Jiang M, et al. Cleanliness ofmolten steel improved by Mg. J Iron Steel Res, 2008, 20(6): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON200806005.htm陳斌, 包薩日娜, 姜敏, 等. 鎂提高鋼水純凈度的研究. 鋼鐵研究學報, 2008, 20(6): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON200806005.htm [11] Yang J, Xu L Y, Zhu K, et al. Improvement of HAZ toughness of steel plate for high heat input welding by inclusion control with Mg deoxidation. Steel Res Int, 2015, 86(6): 619 doi: 10.1002/srin.201400313 [12] Liu X, Yang J C, Yang L, et al. Effect of Ce oninclusions and impact oroperty of 2Cr13 stainless steel. J Iron Steel Res Int, 2010, 17(12): 59 doi: 10.1016/S1006-706X(10)60198-7 [13] Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros Sci, 2017, 129: 82 doi: 10.1016/j.corsci.2017.10.001 [14] Yang J C, Li H W, Zhou L, et al. Mechanism of trace cerium in ultra-clean IF steel. Iron Steel, 2015, 50(11): 81 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201511017.htm楊吉春, 栗宏偉, 周莉, 等. 微量稀土鈰在超潔凈IF鋼中的作用. 鋼鐵, 2015, 50(11): 81 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201511017.htm [15] Song M M, Song B, Yang Z B, et al. Microstructure and inclusion evolution in rare earth treated C-Mn steel. Chin J Eng, 2015, 37(12): 1564 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201512005.htm宋明明, 宋波, 楊占兵, 等. 稀土處理C-Mn鋼顯微組織和夾雜物演化. 工程科學學報, 2015, 37(12): 1564 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201512005.htm [16] Xi X J, Lai C B, Li J S, et al. Effect of Y-base rare earth on the microstructure and impact toughness of E36 steel plate. Chin J Eng, 2017, 39(2): 244 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201702012.htm習小軍, 賴朝彬, 李京社, 等. 釔基稀土對E36鋼板顯微組織及沖擊性能的影響. 工程科學學報, 2017, 39(2): 244 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201702012.htm [17] Sun H, Ji Y P, Chen L. Effect ofrare earth Ce on microstructure and properties of X65 pipeline steels. Chin J Process Eng, 2010, 10(2): 240 https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201002010.htm孫昊, 計云萍, 陳林. 稀土Ce對X65管線鋼組織和性能的影響. 過程工程學報, 2010, 10(2): 240 https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201002010.htm [18] Lu L T, Li W, Zhang J W, et al. Analysis of rotary bending gigacycle fatigue properties of bearing steel GCr15. Acta Metall Sin, 2009, 45(1): 73 doi: 10.3321/j.issn:0412-1961.2009.01.012魯連濤, 李偉, 張繼旺, 等. GCr15鋼旋轉彎曲超長壽命疲勞性能分析. 金屬學報, 2009, 45(1): 73 doi: 10.3321/j.issn:0412-1961.2009.01.012 [19] Uesugi T. Recent development of bearing steel in Japan. Tetsuto-Hagane, 1988, 74(10): 1889 doi: 10.2355/tetsutohagane1955.74.10_1889 [20] Akesson J. SKFrolling bearing steels-properties and processes. Ball Bear J, 1983, 217: 32 http://ci.nii.ac.jp/naid/10006645329 [21] Ohta H, Suito H. Activities in CaO-MgO-Al2O3 slags and deoxidation equilibria of Al, Mg, and Ca. ISIJ Int, 1996, 36(8): 983 doi: 10.2355/isijinternational.36.983 -