<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

圓坯凝固末端電磁攪拌作用下的流動與傳熱行為

李少翔 王璞 蘭鵬 劉華松 劉麒麟 李樹貴 張家泉

李少翔, 王璞, 蘭鵬, 劉華松, 劉麒麟, 李樹貴, 張家泉. 圓坯凝固末端電磁攪拌作用下的流動與傳熱行為[J]. 工程科學學報, 2019, 41(6): 748-756. doi: 10.13374/j.issn2095-9389.2019.06.006
引用本文: 李少翔, 王璞, 蘭鵬, 劉華松, 劉麒麟, 李樹貴, 張家泉. 圓坯凝固末端電磁攪拌作用下的流動與傳熱行為[J]. 工程科學學報, 2019, 41(6): 748-756. doi: 10.13374/j.issn2095-9389.2019.06.006
LI Shao-xiang, WANG Pu, LAN Peng, LIU Hua-song, LIU Qi-lin, LI Shu-gui, ZHANG Jia-quan. Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring[J]. Chinese Journal of Engineering, 2019, 41(6): 748-756. doi: 10.13374/j.issn2095-9389.2019.06.006
Citation: LI Shao-xiang, WANG Pu, LAN Peng, LIU Hua-song, LIU Qi-lin, LI Shu-gui, ZHANG Jia-quan. Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring[J]. Chinese Journal of Engineering, 2019, 41(6): 748-756. doi: 10.13374/j.issn2095-9389.2019.06.006

圓坯凝固末端電磁攪拌作用下的流動與傳熱行為

doi: 10.13374/j.issn2095-9389.2019.06.006
基金項目: 

國家自然科學基金資助項目 U1860111

北京科技大學本科教育教學改革項目 JG2017M11

詳細信息
    通訊作者:

    張家泉, E-mail: jqzhang@metall.ustb.edu.cn

  • 中圖分類號: TF777.4

Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring

More Information
  • 摘要: 以特殊鋼圓坯連鑄為研究對象, 建立了研究凝固末端電磁攪拌作用效果的三維耦合數值模型.利用分段計算模型獲得末端電磁攪拌區域鋼液流動與凝固的實際狀態, 并采用達西源項法處理凝固末端鋼液在糊狀區的流動, 研究了不同電磁攪拌工藝參數下的電磁場分布及鋼液的流動與傳熱特征.通過測量攪拌器中心線磁感應強度和鑄坯表面溫度驗證了模型的準確性.研究結果表明: 電流強度每增加100 A, 攪拌器中心磁感應強度增加19.05 mT, 電磁力隨著電流強度的增加顯著增大.在20~40 Hz范圍, 隨著電流頻率的提高, 中心磁感應強度略微下降, 但電磁力仍有所增加.在攪拌器區域, 液相穴內的鋼液在切向電磁力的作用下旋轉流動, 其切向速度隨著電流強度和頻率的增加而變大.末端電磁攪拌可促進鋼液在圓坯徑向的換熱, 隨著電流強度和頻率的提高, 鑄坯中心軸線上的鋼液溫度降低, 同時末端攪拌位置處的中心固相分率增加.

     

  • 圖  1  末端電磁攪拌模型結構圖

    Figure  1.  Model of the F-EMS

    圖  2  攪拌器中心軸線上的磁感應強度(a) 及鑄坯表面溫度(b) 的計算值與測量值

    Figure  2.  Comparison between calculated and measured values of the magnetic flux density (a) and billet surface temperature (b)

    圖  3  鑄坯表面的磁感應強度云圖(a) 及鑄坯橫截面上的電磁力矢量圖(b)

    Figure  3.  Contour plot of magnetic flux density on the strand surface (a) and electromagnetic force density on the transverse section (b)

    圖  4  不同電流強度下攪拌器中心軸線上(a) 及攪拌器中心點(b) 的磁感應強度分布

    Figure  4.  Distribution of magnetic flux density along the central axis of the strand (a) and in the stirrer center (b) under different current intensities

    圖  5  不同電流頻率下攪拌器中心軸線上(a) 及攪拌器中心點(b) 的磁感應強度分布

    Figure  5.  Distribution of magnetic flux density along the central axis of the strand (a) and in the stirrer center (b) under different current frequencies

    圖  6  不同電流強度(a) 與頻率(b) 下攪拌器中心處鑄坯橫截面上的切向電磁力分布

    Figure  6.  Distribution of tangential electromagnetic force along the radial direction at mid-plane of the stirrer under different current intensities (a) and frequencies (b)

    圖  7  沿拉坯方向的鑄坯中心軸線溫度與坯殼生長情況

    Figure  7.  Distribution of temperature at the strand center and growth of shell thickness along the casting direction

    圖  8  攪拌器區域液芯處的鋼液流線圖

    Figure  8.  Streamline of melt in the liquid core in the stirrer region

    圖  9  鑄坯縱斷面上的液相分率分布(a) 及攪拌器中心處鑄坯橫截面上的液相分率和流線圖(b)

    Figure  9.  Liquid fraction contour on the longitudinal section of the strand (a) and cross section of the stirrer center (b)

    圖  10  不同電流強度(a) 與頻率(b) 下攪拌器中心處鑄坯橫截面上的鋼液切向速度沿徑向分布

    Figure  10.  Tangential velocity profile along the radial direction at center plane of the stirrer under different current intensities (a) and frequencies (b)

    圖  11  不同電流強度(a) 與頻率(b) 下鑄坯中心軸線上的溫度分布

    Figure  11.  Temperature variations at the strand center along the casting direction under different current intensities (a) and frequencies (b)

    表  1  材料熱物性參數

    Table  1.   Thermophysical properties of material employed in this study

    參數 數值
    真空磁導率/(H·m-1) 1.257×10-6
    鋼液、線圈和空氣相對磁導率 1
    鐵芯相對磁導率 1000
    鋼液電導率/(S·m-1) 7. 14×10-5
    鋼液密度/(kg·m-3) 7020
    鋼液比熱容/(J·kg-1·K-1) 680
    鋼液導熱系數/(W·m-1·K-1) 29
    鋼液黏度/(kg·m-1·s-1) 0.0055
    凝固潛熱/(J·kg-1) 270000
    熱膨脹系數/K-1 1x10-4
    固相線溫度/K 1738
    液相線溫度/K 1784
    糊狀區常數[17] 1×108
    下載: 導出CSV

    表  2  連鑄工藝參數

    Table  2.   Main technical parameters of the continuous casting process

    參數 數值
    斷面直徑/mm 178
    拉速/(m·min-1) 2. 0
    過熱度/K 34
    二冷區比水量/(kg.L-1) 0. 65
    M—EMS工作電流/A 400
    M-EMS工作頻率/Hz 6
    F—EMS工作電流/A 400 ~ 800
    F-EMS工作頻率/Hz 20 ~40
    F—EMS中心位置(距彎月面距離)/m 10. 5
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Mao B, Zhang G F, Li A W. Theory and Technology of Electromagnetic Stirring for Continuous Casting. Beijing: Metallurgical Industry Press, 2012

    毛斌, 張桂芳, 李愛武. 連續鑄鋼用電磁攪拌的理論與技術. 北京: 冶金工業出版社, 2012
    [2] Ayata K, Mori T, Fujimoto T, et al. Improvement of macrosegregation in continuously cast bloom and billet by electromagnetic stirring. Trans Iron Steel Inst Jpn, 1984, 24(11): 931 doi: 10.2355/isijinternational1966.24.931
    [3] Mizukami H, Komatsu M, Kitagawa T, et al. Effect of electromagnetic stirring at the final stage of solidification of continuously cast strand. Tetsu-to-Hagané, 1984, 70(2): 194 doi: 10.2355/tetsutohagane1955.70.2_194
    [4] Suzuki K, Shinsho Y, Murata K, et al. Hot model experiments on electromagnetic stirring at about crater end of continuously cast bloom. Trans Iron Steel Inst Jpn, 1984, 24(11): 940 doi: 10.2355/isijinternational1966.24.940
    [5] Oh K S, Chang Y W. Macrosegeregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring. ISIJ Int, 1995, 35(7): 866 doi: 10.2355/isijinternational.35.866
    [6] Wang B, Xie Z, Jia G L, et al. Parameter determination and effects on center segregation of F-EMS. Iron Steel, 2007, 42(3): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200703004.htm

    王彪, 謝植, 賈光霖, 等. 凝固末端電磁攪拌參數確定及其對中心偏析的影響. 鋼鐵, 2007, 42(3): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200703004.htm
    [7] Ge L, Zeng Y N, Wang C Y, et al. Optimization of F-EMS parameters of bloom continuous casting. Steelmaking, 2015, 31(1): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201501018.htm

    葛亮, 曾亞南, 汪成義, 等. 大方坯末端電磁攪拌工藝參數優化. 煉鋼, 2015, 31(1): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201501018.htm
    [8] Wang B, Chen L, Zhang X, et al. Study and application of the F——EMS position for the special steel bloom continuous casting. Contin Cast, 2016, 41(5): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-LANG201605007.htm

    王波, 陳列, 張旭, 等. 特殊鋼連鑄大方坯末端電磁攪拌位置研究與應用. 連鑄, 2016, 41(5): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-LANG201605007.htm
    [9] Zhou L, Gao S C, Jiang D C, et al. Optimization on F-EMS position and casting parameters of billet caster. Steelmaking, 2018, 34(2): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201802007.htm

    周力, 高書成, 蔣棟初, 等. 小方坯連鑄機末端電磁攪拌位置及連鑄工藝優化實踐. 煉鋼, 2018, 34(2): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201802007.htm
    [10] Ding N, Bao Y P, Sun Q S, et al. Location determination of final electromagnetic stirring and its effect on central carbon segregation for SWRH82B steel. J Univ Sci Technol Beijing, 2011, 33(1): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201101005.htm

    丁寧, 包燕平, 孫奇松, 等. 末端電磁攪拌位置確定及對SWRH82B鋼中心偏析的影響. 北京科技大學學報, 2011, 33(1): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201101005.htm
    [11] An H H, Bao Y P, Wang M, et al. Effect of combining F-EMS and MSR on the segregation and shrinkage cavity in continuously cast high-carbon steel blooms. Chin J Eng, 2017, 39(7): 996 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201707004.htm

    安航航, 包燕平, 王敏, 等. 凝固末端電磁攪拌和輕壓下復合技術對大方坯高碳鋼偏析和中心縮孔的影響. 工程科學學報, 2017, 39(7): 996 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201707004.htm
    [12] Sun H B, Li L J, Cheng X W, et al. Optimizing and designing the technology parameters of the F-EMS for the bloom continuous casting. Steelmaking, 2015, 31(4): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201504010.htm

    孫海波, 李烈軍, 程曉文, 等. 大方坯末端電磁攪拌工藝參數優化與設計. 煉鋼, 2015, 31(4): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201504010.htm
    [13] Sun H B, Li L J, Wang J H, et al. Coordinating optimisation of F-EMS and soft reduction during bloom continuous casting process for special steel. Ironmaking Steelmaking, 2018, 45(8): 708 doi: 10.1080/03019233.2017.1323394
    [14] Su W, Jiang D B, Luo S, et al. Numerical simulation for optimization of F-EMS in billet continuous casting. J Northeast Univ Nat Sci, 2013, 34(5): 673 doi: 10.3969/j.issn.1005-3026.2013.05.015

    蘇旺, 姜東濱, 羅森, 等. 方坯連鑄凝固末端電磁攪拌工藝優化的數值模擬. 東北大學學報(自然科學版), 2013, 34(5): 673 doi: 10.3969/j.issn.1005-3026.2013.05.015
    [15] Li S X, Lan P, Tang H Y, et al. Study on the electromagnetic field, fluid flow, and solidification in a bloom continuous casting mold by numerical simulation. Steel Res Int, 2018, 89(12): 1800071 doi: 10.1002/srin.201800071
    [16] Jones W P, Launder B E. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Transfer, 1973, 16(6): 1119 doi: 10.1016/0017-9310(73)90125-7
    [17] Li S X, Zhang X M, Li L, et al. Representation and effect of mushy zone coefficient on coupled flow and solidification simulation during continuous casting. Chin J Eng, 2019, 41(2): 199 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201902006.htm

    李少翔, 張曉萌, 李亮, 等. 連鑄流動與凝固耦合模擬中糊狀區系數的表征及影響. 工程科學學報, 2019, 41(2): 199 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201902006.htm
    [18] Lai K Y M, Salcudean M, Tanaka S, et al. Mathematical modeling of flows in large tundish systems in steelmaking. Metall Trans B, 1986, 17(3): 449 doi: 10.1007/BF02670209
    [19] Savage J, Pritchard W H. The problem of rupture of the billet in the continuous casting of steel. J Iron Steel Inst, 1954, 178(3): 269 http://www.researchgate.net/publication/284154760_The_problem_of_rupture_of_the_billet_in_the_continuous_casting_of_steel
    [20] Beitelman L. Effect of mold EMS design on billet casting productivity and product quality. Can Metall Q, 1999, 38(5): 301 doi: 10.1179/cmq.1999.38.5.301
  • 加載中
圖(11) / 表(2)
計量
  • 文章訪問數:  1179
  • HTML全文瀏覽量:  468
  • PDF下載量:  46
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-11-30
  • 刊出日期:  2019-06-01

目錄

    /

    返回文章
    返回