Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring
-
摘要: 以特殊鋼圓坯連鑄為研究對象, 建立了研究凝固末端電磁攪拌作用效果的三維耦合數值模型.利用分段計算模型獲得末端電磁攪拌區域鋼液流動與凝固的實際狀態, 并采用達西源項法處理凝固末端鋼液在糊狀區的流動, 研究了不同電磁攪拌工藝參數下的電磁場分布及鋼液的流動與傳熱特征.通過測量攪拌器中心線磁感應強度和鑄坯表面溫度驗證了模型的準確性.研究結果表明: 電流強度每增加100 A, 攪拌器中心磁感應強度增加19.05 mT, 電磁力隨著電流強度的增加顯著增大.在20~40 Hz范圍, 隨著電流頻率的提高, 中心磁感應強度略微下降, 但電磁力仍有所增加.在攪拌器區域, 液相穴內的鋼液在切向電磁力的作用下旋轉流動, 其切向速度隨著電流強度和頻率的增加而變大.末端電磁攪拌可促進鋼液在圓坯徑向的換熱, 隨著電流強度和頻率的提高, 鑄坯中心軸線上的鋼液溫度降低, 同時末端攪拌位置處的中心固相分率增加.Abstract: Final electromagnetic stirring (F-EMS) is widely used in the billet and bloom continuous casting process because it effectively improves the as-cast quality. Numerous industrial trials on F-EMS have been conducted; however, the real melt flow and heat transfer characteristics at the crater end remain unclear. In this study, based on a round billet special steel continuous casting process, a coupled three-dimensional numerical model was developed to describe the F-EMS phenomenon. The flow and solidification behavior of the melt in the F-EMS region were obtained by a segmentation calculation model, and the Darcy source term method was employed to suppress the velocity within the mushy region. The effect of stirring current intensity and frequency on the electromagnetic field, melt flow, and heat transfer was investigated numerically. The model was validated using the measured data of magnetic flux density in the stirrer center and the strand surface temperature. According to the simulation results, with every 100 A increase in the current intensity, the maximal magnetic flux density increases by 19.05 mT. The electromagnetic force significantly increases with the increase in current intensity. With the increase in current frequency within 20-40 Hz, the magnetic flux density decreases slightly, whereas the electromagnetic force increases. Moreover, a swirling flow field in the stirrer region is observed under the rotary electromagnetic force, and the tangential velocity of melt increases with the increase in current intensity and frequency. Additionally, the swirling flow enhances the local melt heat transfer at the radial direction of the round strand. As the current intensity and frequency increase, the temperature of the melt in the liquid core decreases, and the center solid fraction at the F-EMS-implemented position increases accordingly.
-
表 1 材料熱物性參數
Table 1. Thermophysical properties of material employed in this study
參數 數值 真空磁導率/(H·m-1) 1.257×10-6 鋼液、線圈和空氣相對磁導率 1 鐵芯相對磁導率 1000 鋼液電導率/(S·m-1) 7. 14×10-5 鋼液密度/(kg·m-3) 7020 鋼液比熱容/(J·kg-1·K-1) 680 鋼液導熱系數/(W·m-1·K-1) 29 鋼液黏度/(kg·m-1·s-1) 0.0055 凝固潛熱/(J·kg-1) 270000 熱膨脹系數/K-1 1x10-4 固相線溫度/K 1738 液相線溫度/K 1784 糊狀區常數[17] 1×108 表 2 連鑄工藝參數
Table 2. Main technical parameters of the continuous casting process
參數 數值 斷面直徑/mm 178 拉速/(m·min-1) 2. 0 過熱度/K 34 二冷區比水量/(kg.L-1) 0. 65 M—EMS工作電流/A 400 M-EMS工作頻率/Hz 6 F—EMS工作電流/A 400 ~ 800 F-EMS工作頻率/Hz 20 ~40 F—EMS中心位置(距彎月面距離)/m 10. 5 259luxu-164 -
參考文獻
[1] Mao B, Zhang G F, Li A W. Theory and Technology of Electromagnetic Stirring for Continuous Casting. Beijing: Metallurgical Industry Press, 2012毛斌, 張桂芳, 李愛武. 連續鑄鋼用電磁攪拌的理論與技術. 北京: 冶金工業出版社, 2012 [2] Ayata K, Mori T, Fujimoto T, et al. Improvement of macrosegregation in continuously cast bloom and billet by electromagnetic stirring. Trans Iron Steel Inst Jpn, 1984, 24(11): 931 doi: 10.2355/isijinternational1966.24.931 [3] Mizukami H, Komatsu M, Kitagawa T, et al. Effect of electromagnetic stirring at the final stage of solidification of continuously cast strand. Tetsu-to-Hagané, 1984, 70(2): 194 doi: 10.2355/tetsutohagane1955.70.2_194 [4] Suzuki K, Shinsho Y, Murata K, et al. Hot model experiments on electromagnetic stirring at about crater end of continuously cast bloom. Trans Iron Steel Inst Jpn, 1984, 24(11): 940 doi: 10.2355/isijinternational1966.24.940 [5] Oh K S, Chang Y W. Macrosegeregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring. ISIJ Int, 1995, 35(7): 866 doi: 10.2355/isijinternational.35.866 [6] Wang B, Xie Z, Jia G L, et al. Parameter determination and effects on center segregation of F-EMS. Iron Steel, 2007, 42(3): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200703004.htm王彪, 謝植, 賈光霖, 等. 凝固末端電磁攪拌參數確定及其對中心偏析的影響. 鋼鐵, 2007, 42(3): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200703004.htm [7] Ge L, Zeng Y N, Wang C Y, et al. Optimization of F-EMS parameters of bloom continuous casting. Steelmaking, 2015, 31(1): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201501018.htm葛亮, 曾亞南, 汪成義, 等. 大方坯末端電磁攪拌工藝參數優化. 煉鋼, 2015, 31(1): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201501018.htm [8] Wang B, Chen L, Zhang X, et al. Study and application of the F——EMS position for the special steel bloom continuous casting. Contin Cast, 2016, 41(5): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-LANG201605007.htm王波, 陳列, 張旭, 等. 特殊鋼連鑄大方坯末端電磁攪拌位置研究與應用. 連鑄, 2016, 41(5): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-LANG201605007.htm [9] Zhou L, Gao S C, Jiang D C, et al. Optimization on F-EMS position and casting parameters of billet caster. Steelmaking, 2018, 34(2): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201802007.htm周力, 高書成, 蔣棟初, 等. 小方坯連鑄機末端電磁攪拌位置及連鑄工藝優化實踐. 煉鋼, 2018, 34(2): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201802007.htm [10] Ding N, Bao Y P, Sun Q S, et al. Location determination of final electromagnetic stirring and its effect on central carbon segregation for SWRH82B steel. J Univ Sci Technol Beijing, 2011, 33(1): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201101005.htm丁寧, 包燕平, 孫奇松, 等. 末端電磁攪拌位置確定及對SWRH82B鋼中心偏析的影響. 北京科技大學學報, 2011, 33(1): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201101005.htm [11] An H H, Bao Y P, Wang M, et al. Effect of combining F-EMS and MSR on the segregation and shrinkage cavity in continuously cast high-carbon steel blooms. Chin J Eng, 2017, 39(7): 996 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201707004.htm安航航, 包燕平, 王敏, 等. 凝固末端電磁攪拌和輕壓下復合技術對大方坯高碳鋼偏析和中心縮孔的影響. 工程科學學報, 2017, 39(7): 996 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201707004.htm [12] Sun H B, Li L J, Cheng X W, et al. Optimizing and designing the technology parameters of the F-EMS for the bloom continuous casting. Steelmaking, 2015, 31(4): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201504010.htm孫海波, 李烈軍, 程曉文, 等. 大方坯末端電磁攪拌工藝參數優化與設計. 煉鋼, 2015, 31(4): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-LGZZ201504010.htm [13] Sun H B, Li L J, Wang J H, et al. Coordinating optimisation of F-EMS and soft reduction during bloom continuous casting process for special steel. Ironmaking Steelmaking, 2018, 45(8): 708 doi: 10.1080/03019233.2017.1323394 [14] Su W, Jiang D B, Luo S, et al. Numerical simulation for optimization of F-EMS in billet continuous casting. J Northeast Univ Nat Sci, 2013, 34(5): 673 doi: 10.3969/j.issn.1005-3026.2013.05.015蘇旺, 姜東濱, 羅森, 等. 方坯連鑄凝固末端電磁攪拌工藝優化的數值模擬. 東北大學學報(自然科學版), 2013, 34(5): 673 doi: 10.3969/j.issn.1005-3026.2013.05.015 [15] Li S X, Lan P, Tang H Y, et al. Study on the electromagnetic field, fluid flow, and solidification in a bloom continuous casting mold by numerical simulation. Steel Res Int, 2018, 89(12): 1800071 doi: 10.1002/srin.201800071 [16] Jones W P, Launder B E. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Transfer, 1973, 16(6): 1119 doi: 10.1016/0017-9310(73)90125-7 [17] Li S X, Zhang X M, Li L, et al. Representation and effect of mushy zone coefficient on coupled flow and solidification simulation during continuous casting. Chin J Eng, 2019, 41(2): 199 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201902006.htm李少翔, 張曉萌, 李亮, 等. 連鑄流動與凝固耦合模擬中糊狀區系數的表征及影響. 工程科學學報, 2019, 41(2): 199 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201902006.htm [18] Lai K Y M, Salcudean M, Tanaka S, et al. Mathematical modeling of flows in large tundish systems in steelmaking. Metall Trans B, 1986, 17(3): 449 doi: 10.1007/BF02670209 [19] Savage J, Pritchard W H. The problem of rupture of the billet in the continuous casting of steel. J Iron Steel Inst, 1954, 178(3): 269 http://www.researchgate.net/publication/284154760_The_problem_of_rupture_of_the_billet_in_the_continuous_casting_of_steel [20] Beitelman L. Effect of mold EMS design on billet casting productivity and product quality. Can Metall Q, 1999, 38(5): 301 doi: 10.1179/cmq.1999.38.5.301 -