<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

從選銅尾礦中選擇性還原回收鐵

邵爽 邢鵬 張文娟 馬保中 王成彥 陳永強 王玲

邵爽, 邢鵬, 張文娟, 馬保中, 王成彥, 陳永強, 王玲. 從選銅尾礦中選擇性還原回收鐵[J]. 工程科學學報, 2019, 41(6): 741-747. doi: 10.13374/j.issn2095-9389.2019.06.005
引用本文: 邵爽, 邢鵬, 張文娟, 馬保中, 王成彥, 陳永強, 王玲. 從選銅尾礦中選擇性還原回收鐵[J]. 工程科學學報, 2019, 41(6): 741-747. doi: 10.13374/j.issn2095-9389.2019.06.005
SHAO Shuang, XING Peng, ZHANG Wen-juan, MA Bao-zhong, WANG Cheng-yan, CHEN Yong-qiang, WANG Ling. Process of the selective reduction and recovery of iron from copper tailings[J]. Chinese Journal of Engineering, 2019, 41(6): 741-747. doi: 10.13374/j.issn2095-9389.2019.06.005
Citation: SHAO Shuang, XING Peng, ZHANG Wen-juan, MA Bao-zhong, WANG Cheng-yan, CHEN Yong-qiang, WANG Ling. Process of the selective reduction and recovery of iron from copper tailings[J]. Chinese Journal of Engineering, 2019, 41(6): 741-747. doi: 10.13374/j.issn2095-9389.2019.06.005

從選銅尾礦中選擇性還原回收鐵

doi: 10.13374/j.issn2095-9389.2019.06.005
基金項目: 

國家重點研發計劃資助項目 2018YFC1900304

國家自然科學基金青年基金資助項目 51804029

國家自然科學基金云南省聯合基金資助項目 U1802253

廣西科技重大專項資助項目 2018AA21022

北京市自然科學基金資助項目 2182040

詳細信息
    通訊作者:

    馬保中, E-mail: bzhma@126.com

  • 中圖分類號: TF803.1

Process of the selective reduction and recovery of iron from copper tailings

More Information
  • 摘要: 提出采用煤較低溫度下選擇性還原選銅尾礦中的鐵, 還原球團磁選回收鐵的技術, 并考察了還原溫度、還原劑用量、還原時間、活化劑用量對選銅尾礦選擇性還原回收鐵的影響, 得出最佳工藝條件: 還原溫度為1200℃, 還原劑用量為原料質量25%, 還原時間為2 h, 活化劑用量為原料質量5%;在最佳工藝條件下, 磁選精礦中鐵質量分數超過90%, 鐵回收率大于95%.借助X射線衍射儀、光學顯微鏡和掃描電子顯微鏡等檢測手段對原料、還原球團、磁選礦的礦相組成和結構進行分析, 揭示了鐵礦相還原及金屬相生成/融合演變規律: 升高溫度促進金屬相的還原、融合兼并和生長; 增加還原劑用量使金屬顆粒的融合兼并變得更加普遍; 延長還原時間促進金屬粒子的融合和鐵橄欖石相的還原; 活化劑促進金屬粒子的擴散和融合.金屬顆粒的兼并生長促使其粒度增大, 粗粒金屬顆粒在磁選工序裹夾帶入磁選精礦的渣相量相對較少, 磁選精礦鐵含量顯著提高.

     

  • 圖  1  原料X射線衍射圖譜

    Figure  1.  XRD pattern of copper tailings

    圖  2  原料光學顯微鏡照片. (a) 鐵酸鹽和鐵橄欖石共生; (b) 鐵酸鹽和玻璃相共生

    Figure  2.  Optical microscopy images of copper tailings: (a) intergrowth of ferrite and fayalite; (b) intergrowth of ferrite and glass phase

    圖  3  不同還原溫度時還原球團的光學顯微鏡照片. (a) 800℃; (b) 900℃; (c) 1000℃; (d) 1200℃

    Figure  3.  Optical microscopy images of pellets reduced at different temperatures: (a) 800℃; (b) 900℃; (c) 1000℃; (d) 1200℃

    圖  4  不同還原劑用量時還原球團的光學顯微鏡照片. (a) 15%; (b) 25%

    Figure  4.  Optical microscopy images of pellets reduced at different reducing agent dosages: (a) 15%; (b) 25%

    圖  5  不同還原時間時還原球團的光學顯微鏡照片. (a) 0.5 h; (b) 1 h; (c) 1.5 h; (d) 2 h

    Figure  5.  Optical microscopy images of pellets reduced at different reduction times: (a) 0.5 h; (b) 1 h; (c) 1.5 h; (d) 2 h

    圖  6  不同活化劑質量分數時還原球團的掃描電鏡照片. (a) 0; (b) 5%

    Figure  6.  SEM photographs of pellets reduced at different activator mass dosages: (a) 0; (b) 5%

    圖  7  磁選精礦X射線衍射圖譜

    Figure  7.  XRD pattern of the magnetic concentrate

    圖  8  磁選礦光學顯微鏡照片. (a) 磁選精礦; (b) 磁選尾礦

    Figure  8.  Optical microscopy images of magnetic ores: (a) magnetic concentrate; (b) magnetic tailings

    表  1  選銅尾礦化學組成半定量分析結果(質量分數)

    Table  1.   Chemical composition of copper tailings ? %

    Fe Si Ca Cu Pb Zn As S 其他
    41. 19 11. 88 12. 87 0. 38 0. 47 3. 79 0. 02 0. 13 29. 27
    下載: 導出CSV

    表  2  選銅尾礦篩析結果

    Table  2.   Screening and analysis results of copper tailings

    粒度尺寸/mm 占比/% Fe質量分數/%
    0. 074 ~ 0. 15 6. 40 36. 04
    0. 05 ~ 0. 074 19. 10 39. 85
    0 ~ 0. 05 74. 50 41. 55
    下載: 導出CSV

    表  3  褐煤成分分析結果(質量分數)

    Table  3.   Composition analysis results of lignite ? %

    固定碳 灰分 揮發分 水分
    52. 06 12. 20 28. 32 0. 26 0. 07 7. 09
    下載: 導出CSV

    表  4  還原溫度對選銅尾礦還原回收鐵的影響

    Table  4.   Effect of reduction temperature on the grade and recovery of iron

    還原溫度/℃ 精礦Fe質量分數/% Fe回收率/%
    800 56. 38 29. 64
    900 79. 93 73. 17
    1000 77. 16 82. 76
    1100 80. 91 93. 71
    1200 92. 08 96. 14
    下載: 導出CSV

    表  5  還原劑用量對選銅尾礦還原回收鐵的影響

    Table  5.   Effect of reducing agent dosage on the grade and recovery of iron

    還原劑質量分數/% 精礦Fe質量分數/% Fe回收率/%
    15 80.46 96. 85
    25 92.08 96. 14
    下載: 導出CSV

    表  6  還原時間對選銅尾礦還原回收鐵的影響

    Table  6.   Effect of reduction time on the grade and recovery of iron

    還原時間/h 精礦Fe質量分數/% Fe回收率/%
    0. 5 75.87 91. 97
    1 79. 06 92. 12
    1. 5 81. 19 95. 50
    2 92. 08 96. 14
    下載: 導出CSV

    表  7  活化劑用量對選銅尾礦還原回收鐵的影響

    Table  7.   Effect of activator dosage on the grade and recovery of iron

    活化劑質量分數/% 精礦Fe質量分數/% Fe回收率/%
    0 87.22 92.40
    2.5 85.20 95. 95
    5.0 92.08 96.14
    下載: 導出CSV

    表  8  綜合條件試驗結果

    Table  8.   Results of comprehensive conditional experiments

    組別 精礦Fe質量分數/% Fe回收率/%
    1 92. 08 96. 14
    2 90. 43 95. 26
    3 92. 76 96. 53
    平均 91. 76 95. 98
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Cheng H X, Zhang H, Xu T Y, et al. Research process on recycling utilization of copper tailing resources. Chem Ind Eng Prog, 2015, 34(Suppl1): 192 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2015S1036.htm

    程海翔, 張輝, 徐天有, 等. 銅礦尾礦資源化利用研究進展. 化工進展, 2015, 34(增刊1): 192 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2015S1036.htm
    [2] Tian J, Shen S W, Ye B, et al. New disposal process and resource recovery of copper tailings. Multipurpose Utiliz Miner Resour, 2016(3): 5 doi: 10.3969/j.issn.1000-6532.2016.03.002

    田鍵, 申盛偉, 葉斌, 等. 銅尾礦資源化利用與處置新工藝. 礦產綜合利用, 2016(3): 5 doi: 10.3969/j.issn.1000-6532.2016.03.002
    [3] Zhu B B, Tian J, Zhu Y C, et al. Current situation and prospect of comprehensive utilization of copper mine tailings. World Build Mater, 2015, 36(5): 84 doi: 10.3963/j.issn.1674-6066.2015.05.020

    朱兵兵, 田鍵, 朱艷超, 等. 銅尾礦綜合利用現狀與展望. 建材世界, 2015, 36(5): 84 doi: 10.3963/j.issn.1674-6066.2015.05.020
    [4] Lan Z Q, Lan Z Y. The progress of comprehensive utilization of copper tailings resource. Conserv Utiliz Miner Resour, 2015(5): 51 https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201505014.htm

    蘭志強, 藍卓越. 銅尾礦資源綜合利用研究進展. 礦產保護與利用, 2015(5): 51 https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201505014.htm
    [5] Liu S H, Li Q L, Song J W. Study on the grinding kinetics of copper tailing powder. Powder Technol, 2018, 330: 105 doi: 10.1016/j.powtec.2018.02.025
    [6] Yin S H, Wang L M, Wu A X, et al. Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria. J Clean Prod, 2018, 189: 746 doi: 10.1016/j.jclepro.2018.04.116
    [7] Zhang H Q, Li Q Y, Wen J, et al. Utilization status and prospect of copper tailings resources. Mod Min, 2017(1): 127 doi: 10.3969/j.issn.1674-6082.2017.01.031

    張宏泉, 李琦緣, 文進, 等. 銅尾礦資源的利用現狀及展望. 現代礦業, 2017(1): 127 doi: 10.3969/j.issn.1674-6082.2017.01.031
    [8] Lv C C, Wang Y L, Qian P, et al. Separation of chalcopyrite and pyrite from a copper tailing by ammonium humate. Chin J Chem Eng, 2018, 26(9): 1814 doi: 10.1016/j.cjche.2018.02.014
    [9] Yang X F, Ma Y. Experimental study on copper tailings in Yunnan for recovery iron and reduction sulfur. Min Metall, 2011, 20(4): 42 doi: 10.3969/j.issn.1005-7854.2011.04.010

    楊曉峰, 馬穎. 云南某選銅尾礦提鐵降硫試驗研究. 礦冶, 2011, 20(4): 42 doi: 10.3969/j.issn.1005-7854.2011.04.010
    [10] Wang Y, Tian J, Zhu Y C. Research on development and exploitation of copper mine tailing. Environ Eng, 2015, 33(Suppl 1): 623 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC2015S1157.htm

    汪洋, 田鍵, 朱艷超. 銅尾礦開發利用現狀分析. 環境工程, 2015, 33(增刊1): 623 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC2015S1157.htm
    [11] Zhang L N, Zhang L, Wang M Y, et al. Treatment and resourceful disposal of copper slag. Multipurpose Utiliz Miner Resour, 2005(5): 22 doi: 10.3969/j.issn.1000-6532.2005.05.006

    張林楠, 張力, 王明玉, 等. 銅渣的處理與資源化. 礦產綜合利用, 2005(5): 22 doi: 10.3969/j.issn.1000-6532.2005.05.006
    [12] Huang X Y, Ni W, Cui W H, et al. Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag. Constr Build Mater, 2012, 27(1): 1 doi: 10.1016/j.conbuildmat.2011.08.034
    [13] Zhu L P, Ni W, Chen W, et al. Hydration process and strength development of autoclaved products using skarn-type copper tailings. Chin J Eng, 2015, 37(3): 359 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201503015.htm

    祝麗萍, 倪文, 陳偉, 等. 矽卡巖型銅尾礦蒸壓制品水化過程及其強度發展. 工程科學學報, 2015, 37(3): 359 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201503015.htm
    [14] Fang Y H, Gu Y M, Kang Q B, et al. Utilization of copper tailing for autoclaved sand-lime brick. Constr Build Mater, 2011, 25(2): 867 doi: 10.1016/j.conbuildmat.2010.06.100
    [15] Li Y X, Zhang D G, Zhang B S, et al. Industrial experiment study on comprehensive utilization of copper tailings. China Resour Comprehens Utiliz, 2014, 32(7): 15 doi: 10.3969/j.issn.1008-9500.2014.07.013

    李耀星, 張登高, 張邦勝, 等. 選銅尾礦綜合利用工業試驗研究. 中國資源綜合利用, 2014, 32(7): 15 doi: 10.3969/j.issn.1008-9500.2014.07.013
    [16] Geng C, Wang H J, Hu W T, et al. Recovery of iron and copper from copper tailings by coal-based direct reduction and magnetic separation. J Iron Steel Res Int, 2017, 24(10): 991 doi: 10.1016/S1006-706X(17)30145-0
    [17] Dong J C, Wei Y G, Lu C, et al. Influence of calcium chloride addition on coal-based reduction roasting of low-nickel garnierite ore. Mater Trans, 2017, 58(8): 1161 doi: 10.2320/matertrans.M2017086
  • 加載中
圖(8) / 表(8)
計量
  • 文章訪問數:  930
  • HTML全文瀏覽量:  378
  • PDF下載量:  23
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-01-16
  • 刊出日期:  2019-06-01

目錄

    /

    返回文章
    返回