Density, viscosity, specific heat capacity, and specific enthalpy of a novel ternary working pair: LiBr-[BMIM]Cl/H2O
-
摘要: 在前期研究的基礎上, 對LiBr-[BMIM]Cl/H2O三元工質對的其他重要熱力學數據進行了系統地測定, 包括密度、黏度、比熱容和比焓.采用最小二乘法對測定的熱力學數據進行回歸, 得到了物性方程; 實驗值與物性方程計算值的平均絕對相對偏差(average absolute relative deviation, AARD)分別為0.03%、1.10%、0.29%和0.01%.除了結晶溫度和腐蝕性, 黏度是影響工質對實際應用的另外一個重要因素, LiBr-[BMIM]Cl/H2O三元工質對的運動黏度小于25 mm2·s-1, 滿足實際應用要求, 且很好地改善了離子液體的高黏度問題.Abstract: Absorption heat pump (AHP) system is an energy-saving technology that utilizes renewable energy or industrial waste heat for refrigeration and heating. Therefore, it has attracted much attention for use in residential and industrial buildings. The thermodynamic performance of the AHP system greatly depends on the thermodynamic properties of its working pairs. In commercial applications, LiBr/H2O is usually used as a traditional working pair. However, its shortcomings of easy crystallization and severe corrosion have significant impacts on the practical application of high-temperature AHP systems. To overcome the shortcomings of LiBr/H2O, various ionic liquids (ILs)/H2O mixtures have been recently investigated as alternative working pairs. Though ILs/H2O has a wider operating temperature range and less corrosiveness, ILs/H2O working pairs generally have very high viscosity, which restricts its practical applications. To further solve the above shortcomings of LiBr/H2O and ILs/H2O, a new ternary working pairs LiBr-[BMIM]Cl/H2O was proposed in the previous study. Compared to the traditional LiBr/H2O binary working pair, the LiBr-[BMIM]Cl/H2O ternary working pair has advantages in terms of crystallization temperature and corrosiveness. LiBr-[BMIM]Cl/H2O shows a great potential in the practical application of an AHP and refrigeration systems, especially at a high temperature. Based on the previous study, in this work, several important thermodynamic properties, including densities, viscosities, specific heat capacities, and specific enthalpies were systematically measured and correlated using the least-squares method, and the average absolute relative deviation (AARD) between the measured data and the calculated data is 0.03%, 1.10%, 0.29%, and 0.01%, respectively. In addition to the crystallization temperature and corrosiveness, viscosity is another key thermodynamic property affecting the practical application of working pairs in AHP system. The viscosity of LiBr-[BMIM]Cl/H2O is less than 25 mm2·s-1, which is well compatible with the application requirement. Moreover, the addition of LiBr in[BMIM]Cl/H2O is beneficial for improving the high viscosity of ionic liquids.
-
Key words:
- ionic liquid /
- lithium bromide /
- working pair /
- thermophysical properties /
- absorption heat pump
-
表 1 實驗用試劑材料詳細數據
Table 1. Detailed information of chemical samples
試劑 純度/% 含水質量分數/% 分析方法 [BMIM] Cl >99. 0 <0. 3 凱氏定氮法 LiBr >99. 5 — — KCl >99. 0 — — 表 2 溫度為298. 15 K和p = 0. 1 MPa時KCl在水中的積分溶解焓Δhmix
Table 2. Integral dissolution enthalpy Δhmix for KCl in water at 298. 15 K and p = 0. 1 MPa ?
g·cm-3 KCl質量分數/% KCl /H2O摩爾比 Δhmix/(kJ·mol-1) 相對偏差/% 實驗值 文獻值[23] 7. 64 1∶ 50 16. 845 17. 083 1. 39 3. 97 1∶ 100 17. 122 17. 427 1. 75 2. 03 1∶ 200 17. 277 17. 556 1. 59 表 3 p=0.1 MPa時LiBr-[BMIM]Cl/H2O體系的密度
Table 3. Density of the system LiBr-[BMIM]Cl/H2O at p=0.1 MPa ?
g·cm-3 T/K ρ w = 0.55 w = 0.60 w = 0.65 w = 0.70 w = 0.75 303.15 1.384 1.434 1.49 1.549 ― 313.15 1.378 1.428 1.483 1.542 ― 323.15 1.372 1.422 1.477 1.535 ― 333.15 1.367 1.416 1.470 1.528 1.590 343.15 1.361 1.411 1.464 1.521 1.582 353.15 1.355 1.405 1.458 1.515 1.575 363.15 1.349 1.399 1.452 1.508 1.568 373.15 1.343 1.393 1.446 1.502 1.561 表 4 密度方程擬合系數
Table 4. Values of Ai, Bi, and Ci for least-squares representation by Eq. (10)
i Ai Bi/10-3 Ci/10-5 0 0. 384514 6. 128884 -1.221983 1 2. 024635 -16.63302 3. 272392 2 8.490245×10-2 8.778485 - 2. 017801 表 5 p=0.1 MPa時LiBr-[BMIM]Cl/H2O體系的運動黏度
Table 5. Viscosity of the system LiBr-[BMIM]Cl/H2O at p=0.1 MPa ?
mm2·s-1 T/K V w =0.55 w= 0.60 w = 0.65 w = 0.70 w = 0.75 303.15 3.81 6.21 10.31 23.01 — 313.15 3.01 4.88 7.82 16.13 — 323.15 2.44 3.87 6.02 11.61 — 333.15 1.99 3.06 4.66 8.39 21.29 343.15 1.68 2.49 3.71 6.35 14.14 353.15 1.46 2.11 3.05 4.94 10.00 363.15 1.30 1.83 2.60 4.03 7.46 373.15 1.18 1.63 2.22 3.34 5.81 表 6 運動黏度方程(11) 擬合系數
Table 6. Values of Ai, Bi, and Ci for least-squares representation by Eq. (11) ?
i Ai/102 Bi/104 Ci/106 0 1. 217521 - 5. 828088 3. 460217 1 -3. 896274 13. 818580 8. 897532 2 3. 291964 - 1. 092322 - 51. 704210 3 - 0. 295650 - 9. 908650 46. 722780 表 7 p=0.1 MPa時LiBr-[BMIM]Cl/H2O體系的比熱容
Table 7. Specific heat capacity of the system LiBr-[BMIM]Cl/H2O at J·g-1·K-1p=0.1 MPa ?
J·g-1·K-1 T/K Cp w = 0. 55 w = 0. 60 w = 0. 65 w = 0. 70 w = 0. 75 303. 15 2. 30 2.20 2.05 1. 94 — 313. 15 2. 32 2. 21 2. 07 1. 96 — 323. 15 2. 33 2. 22 2. 08 1. 96 — 333. 15 2. 34 2. 22 2. 10 1. 97 1. 85 343. 15 2. 35 2. 23 2. 11 1. 98 1. 86 353. 15 2. 38 2. 24 2. 12 2. 01 1. 88 363. 15 2. 40 2. 27 2. 16 2. 03 1. 91 373. 15 2. 45 2. 30 2. 19 2. 07 1. 93 表 8 比熱容方程(12) 擬合系數
Table 8. Values of Ai, Bi, Ci for least-squares representation by Eq. (12)
i Ai Bi/10-2 Ci/10-5 0 4. 656718 - 1. 447759 3. 392384 1 3. 182206 - 1. 114172 -1.471251 2 - 6. 925005 2. 383878 -1. 126738 表 9 p=0.1 MPa時不同溫度下離子液體[BMIM]Cl的比熱容
Table 9. Specific heat capacities of ionic liquid[BMIM]Cl at p=0.1 MPa and different temperatures
溫度/K 283.15 293.15 303. 15 313. 15 323.15 333. 15 343.15 353. 15 363. 15 373. 15 比熱容/(J.g-1·K-1) 1. 55 1.62 1.73 1.94 2. 55 6. 31 1. 98 1. 98 2. 025 2. 05 表 10 溫度為313.15 K和p=0.1 MPa時不同質量分數LiBr-[BMIM]Cl/H2O體系的溶解焓
Table 10. Dissolution enthalpies at various mass fractions of LiBr-[BMIM]Cl/H2O at 313.15 K and p=0.1 MPa
質量分數 0. 55 0. 60 0. 65 0. 70 溶解焓/(kJ·kg-1) - 160. 66 - 173. 93 - 189. 89 - 168. 04 表 11 p=0.1 MPa時LiBr-[BMIM]Cl/H2O體系的比焓
Table 11. Specific enthalpies of the system LiBr-[BMIM]Cl/H2O at p=0.1 MPa ?
J·g-1 T /K h w =0. 55 w = 0. 60 w = 0. 65 w = 0. 70 303. 15 331. 04 312.51 291.33 307. 99 313. 15 354. 18 334. 45 312. 04 327. 44 323.15 377. 38 356. 45 332. 82 346. 97 333. 15 400. 70 378. 56 353. 70 366. 60 343. 15 424. 17 400. 81 374. 72 386. 39 353. 15 447. 84 423. 24 395. 92 406. 35 363. 15 471.75 445. 91 417. 34 426. 54 373. 15 495. 96 468. 84 439. 01 446. 98 表 12 比焓方程(13) 擬合系數
Table 12. Values of Ai, Bi, Ci for least-squares representation by Eq. (13)
i Ai Bi Ci Di 0 -1. 184934 x104 5.791208 x104 -9. 675233 x104 5.399248 x104 1 7. 876601 x10-1 4.862318 -5.643877 2.016601 x10-3 2 4. 233235 x10-3 -1.054922x10-2 8. 114677 x10-3 -2. 862036 x10-6 259luxu-164 -
參考文獻
[1] Srikhirin P, Aphornratana S, Chungpaibulpatana S. A review of absorption refrigeration technologies. Renew Sust Energy Rev, 2001, 5(4): 343 doi: 10.1016/S1364-0321(01)00003-X [2] Rivera W, Best R, Cardoso M J, et al. A review of absorption heat transformers. Appl Therm Eng, 2015, 91: 654 doi: 10.1016/j.applthermaleng.2015.08.021 [3] Sun J, Fu L, Zhang S G. A review of working fluids of absorption cycles. Renew Sust Energy Rev, 2012, 16(4): 1899 doi: 10.1016/j.rser.2012.01.011 [4] Kim K S, Park S Y, Choi S, et al. Vapor pressure of the 1-butyl-3-methylimidazolium bromide + water, 1-butyl-3-methylimidazolium tetrafluoroborate + water, and 1-(2-hydroxyethyl) -3-methlimidazolium tetrafluoroborate + water systems. J Chem Eng Data, 2004, 49(6): 1550 doi: 10.1021/je034210d [5] He Z B, Zhao Z C, Zhang X D, et al. Thermodynamic properties of new heat pump working pairs: 1, 3-dimethylimidazolium dimethylphosphate and water, ethanol and methanol. Fluid Phase Equilibr, 2010, 298(1): 83 doi: 10.1016/j.fluid.2010.07.005 [6] Ren J, Zhao Z C, Zhang X D. Vapor pressures, excess enthalpies, and specific heat capacities of the binary working pairs containing the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate. J Chem Thermodyn, 2011, 43(4): 576 doi: 10.1016/j.jct.2010.11.014 [7] Zuo G L, Zhao Z C, Yan S H, et al. Thermodynamic properties of a new working pair: 1-ethl-3-methylimidazoulium ethylsulfate and water. Chem Eng J, 2010, 156(3): 613 doi: 10.1016/j.cej.2009.06.020 [8] Dong L, Zheng D X, Li J, et al. Suitability prediction and affinity regularity assessment of H2O + imidazolium ionic liquid working pairs of absorption cycle by excess property criteria and UNIFAC model. Fluid Phase Equilibr, 2013, 348: 1 doi: 10.1016/j.fluid.2013.03.007 [9] Wang J Z, Zheng D X, Fan L H, et al. Vapor pressure measurement for the water +1, 3-dimethylimidazolium chloride system and 2, 2, 2-trifluoroethanol +1-ethyl-3-methylimidazolium tetrafluoroborate system. J Chem Eng Data, 2010, 55(6): 2128 doi: 10.1021/je900738e [10] Nie N, Zheng D X, Dong L, et al. Thermodynamic properties of the water +1-(2-hydroxylethyl) -3-methylimidazolium chloride system. J Chem Eng Data, 2012, 57(12): 3598 doi: 10.1021/je3007953 [11] Dong L, Zheng DX, Sun G M, et al. Vapor-liquid equilibrium measurements of difluoromethane +[Emim]OTf, Difluoromethane +[Bmim]OTf, Difluoroethane +[Emim]OTf, and Difluoroethane +[Bmim]OTf systems. J Chem Eng Data, 2011, 56(9): 3663 doi: 10.1021/je2005566 [12] Li J, Zheng D X, Fan L H, et al. Vapor pressure measurement of the ternary systems H2O + LiBr +[Dmim]Cl, H2O + LiBr +[Dmim]BF4, H2O + LiCl +[Dmim]Cl, and H2O + LiCl +[Dmim]BF4. J Chem Eng Data, 2011, 56(1): 97 doi: 10.1021/je1009202 [13] Kim S, Patrl N, Kohl P A. Performance simulation of ionic liquid and hydrofluorocarbon working fluids for an absorption refrigeration system. Ind Eng Chem Res, 2013, 52(19): 6329 doi: 10.1021/ie400261g [14] Kim Y J, Kim S, Joshi Y K, et al. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid. Energy, 2012, 44(1): 1005 doi: 10.1016/j.energy.2012.04.048 [15] Zhang X D, Hu D P. Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water. Appl Therm Eng, 2012, 37: 129 doi: 10.1016/j.applthermaleng.2011.11.006 [16] Zhang X D, Hu D P. Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair. Appl Therm Eng, 2011, 31(16): 3316 doi: 10.1016/j.applthermaleng.2011.06.011 [17] Zheng D X, Dong L, Hung W J, et al. A review of imidazolium ionic liquids research and development towards working pair of absorption cycle. Renew Sust Energy Rev, 2014, 37: 47 doi: 10.1016/j.rser.2014.04.046 [18] Luo C H, Zhang Y, Su Q Q. Saturated vapor pressure, crystallization temperature and corrosivity of LiBr-[BMIM]Cl/H2O working pair. CIESC J, 2016, 67(4): 1110 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201604005.htm羅春歡, 張淵, 蘇慶泉. LiBr-[BMIM]Cl/H2O工質對的飽和蒸氣壓、結晶溫度和腐蝕性. 化工學報, 2016, 67(4): 1110 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201604005.htm [19] Liu G Q, Ma L X, Liu J. Handbook of Chemical and Engineering Property Data: Inorganic Volume. Beijing: Chemical Industry Press, 2002劉光啟, 馬連湘, 劉杰. 化學化工物性數據手冊(無機卷). 北京: 化學工業出版社, 2002 [20] Lee R J, DiGuilio R M, Jeter S M, et al. Properties of lithium bromide-water solutions at high temperatures and concentrations Ⅱ: density and viscosity. ASHRAE Trans, 1990, 96(1): 709 http://www.researchgate.net/publication/285342895_Properties_of_lithium_bromide-water_solutions_at_high_temperatures_and_concentration_II_Density_and_viscocity [21] Iyoki S, Uemura T. Heat capacity of the water-lithium bromide system and the water-lithium bromide-zinc bromide-lithium chloride system at high temperatures. Int J Refrig, 1989, 12(6): 323 doi: 10.1016/0140-7007(89)90063-7 [22] Wang L. Principle and Application of Small-sized Absorption Refrigerator. Beijing: China Architecture and Building Press, 2011王林. 小型吸收式制冷機原理與應用. 北京: 中國建筑工業出版社, 2011 [23] Wagman D D, Evans W H, Parker V B, et al. The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data, 1982, 11(2): 1 http://adsabs.harvard.edu/abs/1982ntct.book.....W [24] Chen D, Xie J H. Heat Pump Water Heater. Beijing: Chemical Industry Press, 2009陳東, 謝繼紅. 熱泵熱水裝置. 北京: 化學工業出版社, 2009 [25] Luo C H, Chen K, Li Y Q, et al. Crystallization temperature, vapor pressure, density, viscosity, and specific heat capacity of the LiNO3/[BMIM]Cl/H2O ternary system. J Chem Eng Data, 2017, 62(10): 3043 doi: 10.1021/acs.jced.7b00059 [26] Dean J A. Lange's Handbook of Chemistry. New York: McGRAW-Hill Inc, 1999 -