<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

LiBr-[BMIM]Cl/H2O新型三元工質對的密度、黏度、比熱容及比焓

羅春歡 王亞楠 韓旭 李藝群 蘇慶泉

羅春歡, 王亞楠, 韓旭, 李藝群, 蘇慶泉. LiBr-[BMIM]Cl/H2O新型三元工質對的密度、黏度、比熱容及比焓[J]. 工程科學學報, 2019, 41(6): 731-740. doi: 10.13374/j.issn2095-9389.2019.06.004
引用本文: 羅春歡, 王亞楠, 韓旭, 李藝群, 蘇慶泉. LiBr-[BMIM]Cl/H2O新型三元工質對的密度、黏度、比熱容及比焓[J]. 工程科學學報, 2019, 41(6): 731-740. doi: 10.13374/j.issn2095-9389.2019.06.004
LUO Chun-huan, WANG Ya-nan, HAN Xu, LI Yi-qun, SU Qing-quan. Density, viscosity, specific heat capacity, and specific enthalpy of a novel ternary working pair: LiBr-[BMIM]Cl/H2O[J]. Chinese Journal of Engineering, 2019, 41(6): 731-740. doi: 10.13374/j.issn2095-9389.2019.06.004
Citation: LUO Chun-huan, WANG Ya-nan, HAN Xu, LI Yi-qun, SU Qing-quan. Density, viscosity, specific heat capacity, and specific enthalpy of a novel ternary working pair: LiBr-[BMIM]Cl/H2O[J]. Chinese Journal of Engineering, 2019, 41(6): 731-740. doi: 10.13374/j.issn2095-9389.2019.06.004

LiBr-[BMIM]Cl/H2O新型三元工質對的密度、黏度、比熱容及比焓

doi: 10.13374/j.issn2095-9389.2019.06.004
基金項目: 

國家自然科學基金資助項目 51506005

中央高校基本科研業務費資助項目 FRF-TP-18-010A3

詳細信息
    通訊作者:

    蘇慶泉, E-mail: suqingquan@ustb.edu.cn

  • 中圖分類號: TK01+9

Density, viscosity, specific heat capacity, and specific enthalpy of a novel ternary working pair: LiBr-[BMIM]Cl/H2O

More Information
  • 摘要: 在前期研究的基礎上, 對LiBr-[BMIM]Cl/H2O三元工質對的其他重要熱力學數據進行了系統地測定, 包括密度、黏度、比熱容和比焓.采用最小二乘法對測定的熱力學數據進行回歸, 得到了物性方程; 實驗值與物性方程計算值的平均絕對相對偏差(average absolute relative deviation, AARD)分別為0.03%、1.10%、0.29%和0.01%.除了結晶溫度和腐蝕性, 黏度是影響工質對實際應用的另外一個重要因素, LiBr-[BMIM]Cl/H2O三元工質對的運動黏度小于25 mm2·s-1, 滿足實際應用要求, 且很好地改善了離子液體的高黏度問題.

     

  • 圖  1  密度和黏度測量原理圖

    Figure  1.  Schematic of measurement apparatus for density and viscosity

    圖  2  質量分數為50%的LiBr/H2O溶液的密度實驗值與文獻值比較

    Figure  2.  Comparison of the density of 50%mass fraction of LiBr/H2O between the data measured in this work and literature data

    圖  3  質量分數為50%的LiBr/H2O溶液的黏度實驗值與文獻值比較

    Figure  3.  Comparison of the viscosity of 50%mass fraction of LiBr/H2O between the data measured in this work and literature data

    圖  4  μRC微量熱儀測定比熱容原理圖

    Figure  4.  Schematic of measurement apparatus for specific heat capacity usingμRC

    圖  5  質量分數為50%的LiBr/H2O溶液的比熱容實驗值與文獻值比較

    Figure  5.  Comparison of specific heat capacity of 50%mass fraction of LiBr/H2O between the data measured in this work and literature data

    圖  6  溶解焓測定原理圖. (a) 注入組件; (b) 組件裝配圖; (c) 裝置圖

    Figure  6.  Schematic of apparatus for dissolution enthalpy: (a) plunger parts; (b) integration diagram; (c) set-up diagram

    圖  7  質量分數為50%和60%的LiBr/H2O溶液的比焓實驗值與文獻值比較

    Figure  7.  Comparison of the specific heat capacity of 50%and 60% LiBr/H2O between the data measured in this work and literature data

    圖  8  LiBr-[BMIM]Cl/H2O三元工質對的密度

    Figure  8.  Densities ρ of LiBr-[BMIM]Cl/H2O ternary working pair

    圖  9  LiBr-[BMIM]Cl/H2O三元工質對的黏度

    Figure  9.  Viscosities v of LiBr-[BMIM]Cl/H2O ternary working pair

    圖  10  LiBr-[BMIM]Cl/H2O三元工質對的比熱容

    Figure  10.  Specific heat capacities Cp of the LiBr-[BMIM]Cl/H2O ternary working pair

    圖  11  LiBr-[BMIM]Cl/H2O三元工質對的比焓

    Figure  11.  Specific enthalpies h of the LiBr-[BMIM]Cl/H2O ternary working pair

    表  1  實驗用試劑材料詳細數據

    Table  1.   Detailed information of chemical samples

    試劑 純度/% 含水質量分數/% 分析方法
    [BMIM] Cl >99. 0 <0. 3 凱氏定氮法
    LiBr >99. 5
    KCl >99. 0
    下載: 導出CSV

    表  2  溫度為298. 15 K和p = 0. 1 MPa時KCl在水中的積分溶解焓Δhmix

    Table  2.   Integral dissolution enthalpy Δhmix for KCl in water at 298. 15 K and p = 0. 1 MPa ? g·cm-3

    KCl質量分數/% KCl /H2O摩爾比 Δhmix/(kJ·mol-1) 相對偏差/%
    實驗值 文獻值[23]
    7. 64 1∶ 50 16. 845 17. 083 1. 39
    3. 97 1∶ 100 17. 122 17. 427 1. 75
    2. 03 1∶ 200 17. 277 17. 556 1. 59
    下載: 導出CSV

    表  3  p=0.1 MPa時LiBr-[BMIM]Cl/H2O體系的密度

    Table  3.   Density of the system LiBr-[BMIM]Cl/H2O at p=0.1 MPa ? g·cm-3

    T/K ρ
    w = 0.55 w = 0.60 w = 0.65 w = 0.70 w = 0.75
    303.15 1.384 1.434 1.49 1.549
    313.15 1.378 1.428 1.483 1.542
    323.15 1.372 1.422 1.477 1.535
    333.15 1.367 1.416 1.470 1.528 1.590
    343.15 1.361 1.411 1.464 1.521 1.582
    353.15 1.355 1.405 1.458 1.515 1.575
    363.15 1.349 1.399 1.452 1.508 1.568
    373.15 1.343 1.393 1.446 1.502 1.561
    下載: 導出CSV

    表  4  密度方程擬合系數

    Table  4.   Values of Ai, Bi, and Ci for least-squares representation by Eq. (10)

    i Ai Bi/10-3 Ci/10-5
    0 0. 384514 6. 128884 -1.221983
    1 2. 024635 -16.63302 3. 272392
    2 8.490245×10-2 8.778485 - 2. 017801
    下載: 導出CSV

    表  5  p=0.1 MPa時LiBr-[BMIM]Cl/H2O體系的運動黏度

    Table  5.   Viscosity of the system LiBr-[BMIM]Cl/H2O at p=0.1 MPa ? mm2·s-1

    T/K V
    w =0.55 w= 0.60 w = 0.65 w = 0.70 w = 0.75
    303.15 3.81 6.21 10.31 23.01
    313.15 3.01 4.88 7.82 16.13
    323.15 2.44 3.87 6.02 11.61
    333.15 1.99 3.06 4.66 8.39 21.29
    343.15 1.68 2.49 3.71 6.35 14.14
    353.15 1.46 2.11 3.05 4.94 10.00
    363.15 1.30 1.83 2.60 4.03 7.46
    373.15 1.18 1.63 2.22 3.34 5.81
    下載: 導出CSV

    表  6  運動黏度方程(11) 擬合系數

    Table  6.   Values of Ai, Bi, and Ci for least-squares representation by Eq. (11) ?

    i Ai/102 Bi/104 Ci/106
    0 1. 217521 - 5. 828088 3. 460217
    1 -3. 896274 13. 818580 8. 897532
    2 3. 291964 - 1. 092322 - 51. 704210
    3 - 0. 295650 - 9. 908650 46. 722780
    下載: 導出CSV

    表  7  p=0.1 MPa時LiBr-[BMIM]Cl/H2O體系的比熱容

    Table  7.   Specific heat capacity of the system LiBr-[BMIM]Cl/H2O at J·g-1·K-1p=0.1 MPa ? J·g-1·K-1

    T/K Cp
    w = 0. 55 w = 0. 60 w = 0. 65 w = 0. 70 w = 0. 75
    303. 15 2. 30 2.20 2.05 1. 94
    313. 15 2. 32 2. 21 2. 07 1. 96
    323. 15 2. 33 2. 22 2. 08 1. 96
    333. 15 2. 34 2. 22 2. 10 1. 97 1. 85
    343. 15 2. 35 2. 23 2. 11 1. 98 1. 86
    353. 15 2. 38 2. 24 2. 12 2. 01 1. 88
    363. 15 2. 40 2. 27 2. 16 2. 03 1. 91
    373. 15 2. 45 2. 30 2. 19 2. 07 1. 93
    下載: 導出CSV

    表  8  比熱容方程(12) 擬合系數

    Table  8.   Values of Ai, Bi, Ci for least-squares representation by Eq. (12)

    i Ai Bi/10-2 Ci/10-5
    0 4. 656718 - 1. 447759 3. 392384
    1 3. 182206 - 1. 114172 -1.471251
    2 - 6. 925005 2. 383878 -1. 126738
    下載: 導出CSV

    表  9  p=0.1 MPa時不同溫度下離子液體[BMIM]Cl的比熱容

    Table  9.   Specific heat capacities of ionic liquid[BMIM]Cl at p=0.1 MPa and different temperatures

    溫度/K 283.15 293.15 303. 15 313. 15 323.15 333. 15 343.15 353. 15 363. 15 373. 15
    比熱容/(J.g-1·K-1) 1. 55 1.62 1.73 1.94 2. 55 6. 31 1. 98 1. 98 2. 025 2. 05
    下載: 導出CSV

    表  10  溫度為313.15 K和p=0.1 MPa時不同質量分數LiBr-[BMIM]Cl/H2O體系的溶解焓

    Table  10.   Dissolution enthalpies at various mass fractions of LiBr-[BMIM]Cl/H2O at 313.15 K and p=0.1 MPa

    質量分數 0. 55 0. 60 0. 65 0. 70
    溶解焓/(kJ·kg-1) - 160. 66 - 173. 93 - 189. 89 - 168. 04
    下載: 導出CSV

    表  11  p=0.1 MPa時LiBr-[BMIM]Cl/H2O體系的比焓

    Table  11.   Specific enthalpies of the system LiBr-[BMIM]Cl/H2O at p=0.1 MPa ? J·g-1

    T /K h
    w =0. 55 w = 0. 60 w = 0. 65 w = 0. 70
    303. 15 331. 04 312.51 291.33 307. 99
    313. 15 354. 18 334. 45 312. 04 327. 44
    323.15 377. 38 356. 45 332. 82 346. 97
    333. 15 400. 70 378. 56 353. 70 366. 60
    343. 15 424. 17 400. 81 374. 72 386. 39
    353. 15 447. 84 423. 24 395. 92 406. 35
    363. 15 471.75 445. 91 417. 34 426. 54
    373. 15 495. 96 468. 84 439. 01 446. 98
    下載: 導出CSV

    表  12  比焓方程(13) 擬合系數

    Table  12.   Values of Ai, Bi, Ci for least-squares representation by Eq. (13)

    i Ai Bi Ci Di
    0 -1. 184934 x104 5.791208 x104 -9. 675233 x104 5.399248 x104
    1 7. 876601 x10-1 4.862318 -5.643877 2.016601 x10-3
    2 4. 233235 x10-3 -1.054922x10-2 8. 114677 x10-3 -2. 862036 x10-6
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Srikhirin P, Aphornratana S, Chungpaibulpatana S. A review of absorption refrigeration technologies. Renew Sust Energy Rev, 2001, 5(4): 343 doi: 10.1016/S1364-0321(01)00003-X
    [2] Rivera W, Best R, Cardoso M J, et al. A review of absorption heat transformers. Appl Therm Eng, 2015, 91: 654 doi: 10.1016/j.applthermaleng.2015.08.021
    [3] Sun J, Fu L, Zhang S G. A review of working fluids of absorption cycles. Renew Sust Energy Rev, 2012, 16(4): 1899 doi: 10.1016/j.rser.2012.01.011
    [4] Kim K S, Park S Y, Choi S, et al. Vapor pressure of the 1-butyl-3-methylimidazolium bromide + water, 1-butyl-3-methylimidazolium tetrafluoroborate + water, and 1-(2-hydroxyethyl) -3-methlimidazolium tetrafluoroborate + water systems. J Chem Eng Data, 2004, 49(6): 1550 doi: 10.1021/je034210d
    [5] He Z B, Zhao Z C, Zhang X D, et al. Thermodynamic properties of new heat pump working pairs: 1, 3-dimethylimidazolium dimethylphosphate and water, ethanol and methanol. Fluid Phase Equilibr, 2010, 298(1): 83 doi: 10.1016/j.fluid.2010.07.005
    [6] Ren J, Zhao Z C, Zhang X D. Vapor pressures, excess enthalpies, and specific heat capacities of the binary working pairs containing the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate. J Chem Thermodyn, 2011, 43(4): 576 doi: 10.1016/j.jct.2010.11.014
    [7] Zuo G L, Zhao Z C, Yan S H, et al. Thermodynamic properties of a new working pair: 1-ethl-3-methylimidazoulium ethylsulfate and water. Chem Eng J, 2010, 156(3): 613 doi: 10.1016/j.cej.2009.06.020
    [8] Dong L, Zheng D X, Li J, et al. Suitability prediction and affinity regularity assessment of H2O + imidazolium ionic liquid working pairs of absorption cycle by excess property criteria and UNIFAC model. Fluid Phase Equilibr, 2013, 348: 1 doi: 10.1016/j.fluid.2013.03.007
    [9] Wang J Z, Zheng D X, Fan L H, et al. Vapor pressure measurement for the water +1, 3-dimethylimidazolium chloride system and 2, 2, 2-trifluoroethanol +1-ethyl-3-methylimidazolium tetrafluoroborate system. J Chem Eng Data, 2010, 55(6): 2128 doi: 10.1021/je900738e
    [10] Nie N, Zheng D X, Dong L, et al. Thermodynamic properties of the water +1-(2-hydroxylethyl) -3-methylimidazolium chloride system. J Chem Eng Data, 2012, 57(12): 3598 doi: 10.1021/je3007953
    [11] Dong L, Zheng DX, Sun G M, et al. Vapor-liquid equilibrium measurements of difluoromethane +[Emim]OTf, Difluoromethane +[Bmim]OTf, Difluoroethane +[Emim]OTf, and Difluoroethane +[Bmim]OTf systems. J Chem Eng Data, 2011, 56(9): 3663 doi: 10.1021/je2005566
    [12] Li J, Zheng D X, Fan L H, et al. Vapor pressure measurement of the ternary systems H2O + LiBr +[Dmim]Cl, H2O + LiBr +[Dmim]BF4, H2O + LiCl +[Dmim]Cl, and H2O + LiCl +[Dmim]BF4. J Chem Eng Data, 2011, 56(1): 97 doi: 10.1021/je1009202
    [13] Kim S, Patrl N, Kohl P A. Performance simulation of ionic liquid and hydrofluorocarbon working fluids for an absorption refrigeration system. Ind Eng Chem Res, 2013, 52(19): 6329 doi: 10.1021/ie400261g
    [14] Kim Y J, Kim S, Joshi Y K, et al. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid. Energy, 2012, 44(1): 1005 doi: 10.1016/j.energy.2012.04.048
    [15] Zhang X D, Hu D P. Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water. Appl Therm Eng, 2012, 37: 129 doi: 10.1016/j.applthermaleng.2011.11.006
    [16] Zhang X D, Hu D P. Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair. Appl Therm Eng, 2011, 31(16): 3316 doi: 10.1016/j.applthermaleng.2011.06.011
    [17] Zheng D X, Dong L, Hung W J, et al. A review of imidazolium ionic liquids research and development towards working pair of absorption cycle. Renew Sust Energy Rev, 2014, 37: 47 doi: 10.1016/j.rser.2014.04.046
    [18] Luo C H, Zhang Y, Su Q Q. Saturated vapor pressure, crystallization temperature and corrosivity of LiBr-[BMIM]Cl/H2O working pair. CIESC J, 2016, 67(4): 1110 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201604005.htm

    羅春歡, 張淵, 蘇慶泉. LiBr-[BMIM]Cl/H2O工質對的飽和蒸氣壓、結晶溫度和腐蝕性. 化工學報, 2016, 67(4): 1110 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201604005.htm
    [19] Liu G Q, Ma L X, Liu J. Handbook of Chemical and Engineering Property Data: Inorganic Volume. Beijing: Chemical Industry Press, 2002

    劉光啟, 馬連湘, 劉杰. 化學化工物性數據手冊(無機卷). 北京: 化學工業出版社, 2002
    [20] Lee R J, DiGuilio R M, Jeter S M, et al. Properties of lithium bromide-water solutions at high temperatures and concentrations Ⅱ: density and viscosity. ASHRAE Trans, 1990, 96(1): 709 http://www.researchgate.net/publication/285342895_Properties_of_lithium_bromide-water_solutions_at_high_temperatures_and_concentration_II_Density_and_viscocity
    [21] Iyoki S, Uemura T. Heat capacity of the water-lithium bromide system and the water-lithium bromide-zinc bromide-lithium chloride system at high temperatures. Int J Refrig, 1989, 12(6): 323 doi: 10.1016/0140-7007(89)90063-7
    [22] Wang L. Principle and Application of Small-sized Absorption Refrigerator. Beijing: China Architecture and Building Press, 2011

    王林. 小型吸收式制冷機原理與應用. 北京: 中國建筑工業出版社, 2011
    [23] Wagman D D, Evans W H, Parker V B, et al. The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data, 1982, 11(2): 1 http://adsabs.harvard.edu/abs/1982ntct.book.....W
    [24] Chen D, Xie J H. Heat Pump Water Heater. Beijing: Chemical Industry Press, 2009

    陳東, 謝繼紅. 熱泵熱水裝置. 北京: 化學工業出版社, 2009
    [25] Luo C H, Chen K, Li Y Q, et al. Crystallization temperature, vapor pressure, density, viscosity, and specific heat capacity of the LiNO3/[BMIM]Cl/H2O ternary system. J Chem Eng Data, 2017, 62(10): 3043 doi: 10.1021/acs.jced.7b00059
    [26] Dean J A. Lange's Handbook of Chemistry. New York: McGRAW-Hill Inc, 1999
  • 加載中
圖(11) / 表(12)
計量
  • 文章訪問數:  1121
  • HTML全文瀏覽量:  511
  • PDF下載量:  13
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-05-30
  • 刊出日期:  2019-06-01

目錄

    /

    返回文章
    返回