<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

低礦化度水驅中的微粒運移機理及其開發效果

崔傳智 韋自健 劉力軍 李曉軍 龐麗麗

崔傳智, 韋自健, 劉力軍, 李曉軍, 龐麗麗. 低礦化度水驅中的微粒運移機理及其開發效果[J]. 工程科學學報, 2019, 41(6): 719-730. doi: 10.13374/j.issn2095-9389.2019.06.003
引用本文: 崔傳智, 韋自健, 劉力軍, 李曉軍, 龐麗麗. 低礦化度水驅中的微粒運移機理及其開發效果[J]. 工程科學學報, 2019, 41(6): 719-730. doi: 10.13374/j.issn2095-9389.2019.06.003
CUI Chuan-zhi, WEI Zi-jian, LIU Li-jun, LI Xiao-jun, PANG Li-li. Mechanism of fines migration in low-salinity waterflooding and its development effect[J]. Chinese Journal of Engineering, 2019, 41(6): 719-730. doi: 10.13374/j.issn2095-9389.2019.06.003
Citation: CUI Chuan-zhi, WEI Zi-jian, LIU Li-jun, LI Xiao-jun, PANG Li-li. Mechanism of fines migration in low-salinity waterflooding and its development effect[J]. Chinese Journal of Engineering, 2019, 41(6): 719-730. doi: 10.13374/j.issn2095-9389.2019.06.003

低礦化度水驅中的微粒運移機理及其開發效果

doi: 10.13374/j.issn2095-9389.2019.06.003
基金項目: 

國家科技重大專項資助項目 2016ZX05011-002-003

山東省自然科學基金資助項目 ZR2017MEE054

詳細信息
    通訊作者:

    韋自健, E-mail: 781612619@qq.com

  • 中圖分類號: TE341

Mechanism of fines migration in low-salinity waterflooding and its development effect

More Information
  • 摘要: 低礦化度水驅作為一種經濟可行的精細化注水技術, 其產生的微粒運移機理能有效地改變儲層物性與吸水剖面, 進而達到均衡驅替和提高采收率的效果.本文基于膠體穩定性Derjaguin-Landau-Verwey-Overbeek (DLVO)理論與擴散雙電層理論, 從微觀角度分析了注入水礦化度、離子價型等因素對黏土微粒受力與運移量的影響, 通過最大滯留體積分數方程建立了微粒運移量與滲透率損傷程度間的關系.針對縱向非均質油藏特高含水期層間干擾嚴重的問題, 開展了特高含水期轉注低礦化度水驅的數值模擬研究.微粒受力分析與數值模擬結果表明, 特高含水期轉注低礦化度水后, 分流量較多的高滲層會產生大量的黏土微粒水化膨脹、運移與堵塞作用, 造成高滲層滲透率明顯下降, 注入水被更多地分流到水驅程度較小的中、低滲層, 有效地調節了吸水剖面并緩解了層間干擾問題, 相比常規海水驅可提高約3%的原油采收率, 進而達到提高層間均衡動用程度與原油采收率的效果.

     

  • 圖  1  砂巖油藏孔隙中黏土微粒運移示意圖

    Figure  1.  Schematic of the clay fines migration in sandstone reservoirs pore space

    圖  2  擴散雙電層結構與表面電勢分布示意圖

    Figure  2.  Schematic of electric double layer and surface potential distri-bution

    圖  3  吸附在巖石表面黏土顆粒受力與力矩平衡示意圖

    Figure  3.  Forces and torque balance for the clay particle attached to the rock surface

    圖  4  不同礦化度、離子組成、pH值及黏土成分下Zeta電勢. (a) 巖石骨架表面; (b) 黏土顆粒表面

    Figure  4.  Zeta potentials at pore surface (a) and fines surface (b) with different salinity, ion composition, pH values, and clay

    圖  5  不同礦化度下的Zeta電勢與表面電勢比值分布曲線

    Figure  5.  Curves of Zeta potential to surface potential ratio at a different ion concentrations

    圖  6  不同離子價型下的Zeta電勢與表面電勢比值分布曲線

    Figure  6.  Curves of Zeta potential to surface potential ratio at different ion valences

    圖  7  不同離子礦化度下的勢能變化曲線

    Figure  7.  Curves of potential energy at a different ion concentrations

    圖  8  不同離子價型下的勢能變化曲線

    Figure  8.  Curves of potential energy at different ion valences

    圖  9  不同離子價下靜電力與礦化度關系曲線

    Figure  9.  Relationship between electrostatic force and salinity at differ- ent ion valences

    圖  10  不同離子價下微粒遷移體積分數與礦化度關系曲線

    Figure  10.  Relationship between strained concentration and salinity at different ion valences

    圖  11  不同離子價型下的滲透率損傷程度與礦化度關系曲線

    Figure  11.  Relationship between permeability damage and salinity at different ion valences

    圖  12  不同微粒粒徑下的滲透率及滲透率損傷程度變化曲線

    Figure  12.  Change of permeability and permeability damage degree un-der different particle sizes

    圖  13  分配到各層的分流量隨時間變化曲線

    Figure  13.  Change of the injected fluid flowing fraction into each layer at the different time

    圖  14  高礦化度水驅與低礦化度水驅采出程度對比

    Figure  14.  Comparison of high salinity waterflooding and low salinity waterflooding degree of reserve recovery

    表  1  哈梅克常數計算值[20]

    Table  1.   Calculated Hamaker constants[20]

    相互反應的介質 哈梅克常數/J
    玻璃/水/空氣 - 1. 595 × 10 -20
    玻璃/水/原油 1. 080 × 10 -20
    石英/水/原油 8. 316 × 10 -21
    石英/水/空氣 - 9. 860 × 10 -21
    石英/水/石英 1. 210 × 10 -20
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Sheng J J. Critical review of low-salinity waterflooding. J Petrol Sci Eng, 2014, 120: 216 doi: 10.1016/j.petrol.2014.05.026
    [2] Tang G Q, Morrow N R. Salinity, temperature, oil composition, and oil recovery by waterflooding. SPE Reserv Eng, 1997, 12(4): 269 doi: 10.2118/36680-PA
    [3] Khilar K C, Fogler H S. The existence of a critical salt concentration for particle release. J Colloid Interface Sci, 1984, 101(1): 214 doi: 10.1016/0021-9797(84)90021-3
    [4] Bernard G G. Effect of floodwater salinity on recovery of oil from cores containing clays//SPE California Regional Meeting. Los Angeles, 1967: SPE-1725-MS
    [5] Muecke T W. Formation fines and factors controlling their movement in porous media. J Petrol Technol, 1979, 31(2): 144 doi: 10.2118/7007-PA
    [6] Bedrikovetsky P, Zeinijahromi A, Siqueira F D, et al. Particle detachment under velocity alternation during suspension transport in porous media. Transp Porous Media, 2012, 91(1): 173 doi: 10.1007/s11242-011-9839-1
    [7] Yuan H, Shapiro A A. Induced migration of fines during waterflooding in communicating layer-cake reservoirs. J Petrol Sci Eng, 2011, 78(3-4): 618 doi: 10.1016/j.petrol.2011.08.003
    [8] Zeinijahromi A, Nguyen T K P, Bedrikovetsky P. Mathematical model for fines-migration-assisted waterflooding with induced formation damage. SPE J, 2013, 18(3): 518 doi: 10.2118/144009-PA
    [9] Yuan B, Moghanloo R G, Zheng D. Enhanced oil recovery by combined nanofluid and low salinity water flooding in multi-layer heterogeneous reservoirs//SPE Annual Technical Conference and Exhibition. Dubai, 2016: SPE-181392-MS http://www.researchgate.net/publication/307955979_Enhanced_Oil_Recovery_by_Combined_Nanofluid_and_Low_Salinity_Water_Flooding_in_Multi-Layer_Heterogeneous_Reservoirs
    [10] Wu J, Chang Y W, Li J, et al. Mechanisms of low salinity waterflooding enhanced oil recovery and its application. J Southwest Petrol Univ Sci Technol Ed, 2015, 37(5): 145 https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201505022.htm

    吳劍, 常毓文, 李嘉, 等. 低礦化度水驅技術增產機理與適用條件. 西南石油大學學報(自然科學版), 2015, 37(5): 145 https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201505022.htm
    [11] Lee S Y, Webb K J, Collins I R, et al. Low salinity oil recovery-increasing understanding of the underlying mechanisms of double layer expansion//IOR 2011-16th European Symposium on Improved Oil Recovery. Cambridge, 2011
    [12] Van Olphen H. Clay Colloid Chemistry Introduction. Beijing: Agricultural Press, 1982

    H. 范·奧爾芬. 粘土膠體化學導論. 北京: 農業出版社, 1982
    [13] Xie Q, Saeedi A, Pooryousefy E, et al. Extended DLVO-based estimates of surface force in low salinity water flooding. J Mol Liq, 2016, 221: 658 doi: 10.1016/j.molliq.2016.06.004
    [14] Zeinijahromi A, Al-Jassasi H, Begg S, et al. Improving sweep efficiency of edge-water drive reservoirs using induced formation damage. J Petrol Sci Eng, 2015, 130: 123 doi: 10.1016/j.petrol.2015.04.008
    [15] Yang G, Chen T, Zhao J, et al. Desorption mechanism of asphaltenes in the presence of electrolyte and the extended Derjaguin-Landau-Verwey-Overbeek theory. Energy Fuels, 2015, 29(7): 4272 doi: 10.1021/acs.energyfuels.5b00866
    [16] Tokunaga T K. DLVO-based estimates of adsorbed water film thicknesses in geologic CO2 reservoirs. Langmuir, 2012, 28(21): 8001 doi: 10.1021/la2044587
    [17] Doukkali M, Patel R B, Stepanov V, et al. The effect of ionic strength and pH on the electrostatic stabilization of nanoRDX. Propell Explos Pyrotech, 2017, 42(9): 1066 doi: 10.1002/prep.201700096
    [18] Hunter R J. Foundations of Colloid Science. Oxford: Oxford University Press, 2001
    [19] Israelachvili J N, Chu B. Intermolecular and Surface Forces with Applications to Colloidal and Biological Systems. J Colloid Interface Sci, 1987, 116(1): 77 http://adsabs.harvard.edu/abs/1987JCIS..116..300P
    [20] Busireddy C, Rao D N. Application of DLVO theory to characterize spreading in crude oil-brine-rock systems//SPE/DOE Symposium on Improved Oil Recovery. Tulsa, 2004: SPE-89425-MS
    [21] Zeinijahromi A, Nguyen P T, Bedrikovetsky P G. Taking advantage of fines-migration-induced formation damage for improved waterflooding (reservoir simulation using polymer flood option)//SPE European Formation Damage Conference. Noordwijk, 2011: SPE-144009-MS
    [22] Kia S F, Fogler H S, Reed M G. Effect of pH on colloidally induced fines migration. J Colloid Interface Sci, 1987, 118(1): 158 doi: 10.1016/0021-9797(87)90444-9
    [23] Kia S F, Fogler H S, Reed M G, et al. Effect of salt composition on clay release in Berea Sandstones//SPE International Symposium on Oilfield Chemistry. San Antonio, 1987: SPE-16254-MS
    [24] Khilar K C, Fogler H S. Migrations of Fines in Porous Media. Netherlands: Springer Science & Business Media, 1998
    [25] Feke D L, Prabhu N D, Mann Jr J A, et al. A formulation of the short-range repulsion between spherical colloidal particles. J Phys Chem, 1984, 88(23): 5735 doi: 10.1021/j150667a055
    [26] Ruckenstein E, Prieve D C. Adsorption and desorption of particles and their chromatographic separation. AIChE J, 1976, 22(2): 276 doi: 10.1002/aic.690220209
    [27] Bedrikovetsky P, Siqueira F D, Furtado C A, et al. Modified particle detachment model for colloidal transport in porous media. Transp Porous Media, 2011, 86(2): 353 doi: 10.1007/s11242-010-9626-4
    [28] Wu Y S, Bai B J. Efficient simulation for low salinity waterflooding in porous and fractured reservoirs//SPE Reservoir Simulation Symposium. The Woodlands, 2009: SPE-118830-MS
    [29] AI-Adasani A, Bai B J, Wu Y S. Investigating low-salinity waterflooding recovery mechanisms in sandstone reservoirs//SPE Improved Oil Recovery Symposium. Tulsa, Oklahoma, 2012: SPE-152997-MS
    [30] Li L. Feasibility Study on Enhancing Oil Recovery by Low Salinity Water Injection in XM Oilfield[Dissertation]. Chengdu: Southwest Petroleum University, 2015

    李磊. XM油田低礦化度注水提高采收率可行性研究[學位論文]. 成都: 西南石油大學, 2015
    [31] Li S X, Gu J W. The Basis of Reservoir Numerical Simulation. Dongying: China University of Petroleum Press, 2009

    李淑霞, 谷建偉. 油藏數值模擬基礎. 東營: 中國石油大學出版社, 2009
    [32] Wang L M, Liao W S, Xu Y, et al. Study and evaluation on fine particle migration damage mechanism of a sandstone deposit. Uran Min Metall, 2015, 34(4): 235 https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI201504006.htm

    王立民, 廖文勝, 許影, 等. 微粒運移對砂巖鈾礦層滲透性的傷害研究及評價. 鈾礦冶, 2015, 34(4): 235 https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI201504006.htm
  • 加載中
圖(14) / 表(1)
計量
  • 文章訪問數:  1152
  • HTML全文瀏覽量:  530
  • PDF下載量:  26
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-04-15
  • 刊出日期:  2019-06-01

目錄

    /

    返回文章
    返回