-
摘要: 對骨切削研究中的骨切削數值仿真本構模型、骨切削手術工藝及機理等方面進行了綜述, 著重介紹了切削參數對骨切削的影響、骨切削刀具設計等, 并對醫學領域新興的超聲骨切削技術進行了介紹和分析.最后得出應從以下方面完善骨切削研究: (1)骨切削數值仿真的本構模型有待開發; (2)構建系統的骨材料切削理論以解釋骨材料切屑形態的切削機理; (3)骨材料切削刀具的開發需要進一步深化; (4)超聲骨切削由于安全性高、損傷小、愈合快的特點將成為未來臨床骨切割操作的發展方向和趨勢.Abstract: Bone cutting is a basic and vital clinical operation in surgery. Traditional mechanical processing methods such as drilling, grinding, and milling, are widely applied in bone surgery. Bone is a hard biological tissue with a complex structure. The compact bone structure is similar to a brittle fiber-reinforced composite. It is easy to damage bone tissue and reduce bone activity during cutting. The quality and efficiency of bone cutting are related to the therapeutic and rehabilitative outcomes of patients. A correct understanding of bone-cutting processes and mechanisms, optimizing the process parameters of bone cutting, and developing advanced bone-cutting surgical tools are important ways to reduce cutting-induced thermal-mechanical damage from bone cutting and improve the postoperative rehabilitation of patients. This article reviewed published works related to constitutive models of bone tissue, bone cutting processes, and the cutting mechanisms used in different bone-cutting surgeries, with a main focus on the effect of machining parameters and tool design. The latest techniques and challenges in ultrasonic bone cutting were also discussed. Finally, it is concluded that bone-cutting research should address the following aspects: (1) improving the constitutive model for numerically simulating bone cutting; (2) constructing a systemic bone-material-cutting theory that explains the cutting mechanism as it relates to the chip morphology of bone material; (3) further refining the development of cutting tools for bone materials; (4) recognizing the advantages of ultrasonic bone cutting, including high safety levels, less damage, and faster healing, which will guide the development trends of future clinical bone-cutting operations.
-
表 1 近年來鉆削研究概述
Table 1. Overview of recent bone-drilling research
時間 研究者 材料 研究內容 結論 2007 Augustin等[20] 豬股骨 鉆頭直徑、頂角、轉速、進給速度、外部冷卻對骨熱壞死的影響. 鉆頭直徑和轉速的增加會導致鉆削溫度升高; 頂角的改變對溫度影響不大; 進給率增加,溫度降低. 2007 Udiljak等[30] 未提及 轉速、進給、頂角及鉆頭幾何形狀常規鉆頭和兩相鉆) 對鉆削力和溫度的影響. 轉速對鉆削力影響不大,和最高溫度成正比; 進給速率和鉆削力成正比,和鉆削溫度成反比; 頂角對鉆削力影響顯著,對溫度幾乎沒有影響. 2011 Lee等[23] 牛股骨 熱傳遞模型; 主軸轉速、進給速度、頂角、鉆頭直徑、螺旋角等對鉆削最高溫度的影響. 提出一種新的應用于骨科手術鉆削的熱模型; 最高溫度隨著主軸轉速、進給率、頂角的增大而增大,隨鉆頭直徑、螺旋角的增大而降低. 2011 Karaca等[21] 牛脛骨 骨密度、性別、頂角、轉速、進給率、鉆削力對鉆削溫度的影響. 相同條件下,雌性牛骨的溫度明顯高于雄性; 最高溫度隨骨密度、主軸轉速、頂角增加而增加,隨進給速度和施加鉆削力的增大而降低. 2012 Sezek等[22] 牛皮質骨 轉速、進給、鉆頭直徑、骨密度和性別、鉆削力對鉆削溫度的影響. 鉆削力、溫度隨著骨密度增加而增加; 得到了最佳參數: 轉速370 r·min-1、進給量70 mm·min-1、鉆削力140 N. 2012 Lee等[29] 牛股骨 主軸轉速、進給速度、鉆孔深度對鉆削溫度分布的影響. 最高溫度隨主軸轉速增大而升高,隨進給率增加而降低. 同種動物的不同骨樣鉆削最高溫度差別為± 5.6 ℃. 2013 Lughmani等[32] 人皮質骨 仿真和實驗法研究轉速和進給速度對鉆削力和扭矩的影響. 提出的用于預測鉆削力和轉矩的有限元鉆削模型具有一定預測精度; 鉆削力和轉矩隨著進給速度和轉速的增加而增大. 2013 Tu等[33] 皮質骨和松質骨 骨鉆削三維有限元仿真以獲得鉆削區溫度分布. 在恒定的進給率下,鉆頭轉速的升高會導致骨鉆削過程中的溫度明顯升高. 2014 Alam等[34] 牛股骨 進給率和轉速,冷卻條件(鹽溶液、空氣) 對鉆削溫度的影響. 較高的轉速和進給速度會導致鉆削溫度升高; 在使用鹽溶液冷卻的條件下,可以使用較高的轉速和進給而不導致骨壞死. 2014 Sui等[37-38] 牛皮質骨 骨鉆削溫度、力、扭矩的預測和實驗驗證. 預測結果和實驗取得了很好的吻合,只是橫刃扭矩的預測值低于實驗值. 2014 Xu等[35] 豬肱骨 生理條件(鹽溶液冷卻) 和沒有外部冷卻條件下醫用麻花鉆鉆孔溫度分布及鉆孔質量觀察. 鉆削力和溫度變化趨勢相似,在鉆頭鉆孔至密質骨和松質骨之間時達到最大,隨后減小; 生理條件下鉆削溫度較低,鉆削力卻大于干鉆削; 鉆削速度增加鉆孔質量得到改善. 2015 Tai等[39] 人皮質骨 反向熱傳遞發和有限元仿真結合研究骨順序鉆孔的溫度分布和熱損傷. 對順序鉆孔路徑進行了優化; 建議在條件允許的情況下,應盡量采用麻花鉆而不是克式鋼針以減小熱損傷和骨壞死. 2016 Li等[36] 未提及 有限元方法研究進給率、轉速和鉆頭直徑對鉆孔的最高溫度的影響. 進給速度、轉速、鉆頭直徑中任意參數增大會使鉆削溫度升高; 參數對溫升的影響具有協同效應; 提出了鉆削溫度經驗公式. 259luxu-164 -
參考文獻
[1] Marco M, Rodríguez-Millán M, Santiuste C, et al. A review on recent advances in numerical modelling of bone cutting. J Mech Behav Biomed Mater, 2015, 44: 179 doi: 10.1016/j.jmbbm.2014.12.006 [2] Takabi B, Tai B L. A review of cutting mechanics and modeling techniques for biological materials. Med Eng Phys, 2017, 45: 1 doi: 10.1016/j.medengphy.2017.04.004 [3] Birkenfeld F, Erika Becker M, Harder S, et al. Increased intraosseous temperature caused by ultrasonic devices during bone surgery and the influences of working pressure and cooling irrigation. Int J Oral Max Impl, 2012, 27(6): 1382 [4] Manerrnann W J, Sampathkumar P, Thompson R L. Sternal wound infections. Best Pract Res Clin Anaesthesiol, 2008, 22(3): 423 doi: 10.1016/j.bpa.2008.04.003 [5] Wiggins K L, Malkin S. Orthogonal machining of bone. J Biomech Eng, 1978, 100(3): 122 doi: 10.1115/1.3426202 [6] Jacobs C H, Pope M H, Berry J T, et al. A study of the bone machining process-orthogonal cutting. J Biomech, 1974, 7(2): 131 doi: 10.1016/0021-9290(74)90051-7 [7] Krause W R. Orthogonal bone cutting: saw design and operating characteristics. J Biomech Eng, 1987, 109(3): 263 doi: 10.1115/1.3138679 [8] Sui J B, Sugita N, Ishii K, et al. Force analysis of orthogonal cutting of bovine cortical bone. Mach Sci Technol, 2013, 17(4): 637 doi: 10.1080/10910344.2013.837355 [9] Alam K, Mitrofanov A V, Silberschmidt V V. Finite element analysis of forces of plane cutting of cortical bone. Comput Mater Sci, 2009, 46(3): 738 doi: 10.1016/j.commatsci.2009.04.035 [10] Alam K, Mitrofanov A V, Silberschmidt V V. Thermal analysis of orthogonal cutting of cortical bone using finite element simulations. Int J Exp Comput Biomech, 2010, 1(3): 236 doi: 10.1504/IJECB.2010.035259 [11] Childs T H C, Arola D. Machining of cortical bone: Simulations of chip formation mechanics using metal machining models. Mach Sci Technol, 2011, 15(2): 206 doi: 10.1080/10910344.2011.580699 [12] Santiuste C, Rodríguez-Millán M, Giner E, et al. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone. Compos Struct, 2014, 116: 423 doi: 10.1016/j.compstruct.2014.05.031 [13] Li S, Zahedi A, Silberschmidt V, et al. Penetration of cutting tool into cortical bone: experimental and numerical investigation of anisotropic mechanical behaviour. J Biomech, 2014, 47: 1117 doi: 10.1016/j.jbiomech.2013.12.019 [14] Feldmann A, Ganser P, Nolte L, et al. Orthogonal cutting of cortical bone: Temperature elevation and fracture toughness. Int J Mach Tools Manuf, 2017, 118-119: 1 doi: 10.1016/j.ijmachtools.2017.03.009 [15] Yin J. Study on Simulation and Experiment of Micro Cutting of Bone[Dissertation]. Harbin: Harbin Institute of Technology, 2016殷杰. 骨骼微切削過程的有限元仿真與實驗研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016 [16] Liao Z R, Axinte D A. On chip formation mechanism in orthogonal cutting of bone. Int J Mach Tools Manuf, 2016, 102: 41 doi: 10.1016/j.ijmachtools.2015.12.004 [17] Liao Z R. Research on Bone Cutting and A Novel Tool Development[Dissertation]. Harbin: Harbin Institute of Technology, 2017廖志榮. 骨材料切削加工及一種新型刀具研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2017 [18] Cui H Y, Hu Y H, Wang C. Study on the prediction model of cutting temperature on cortical bone by micro-texture tool. Mach Tool Hydraul, 2015, 43(23): 31 doi: 10.3969/j.issn.1001-3881.2015.23.008崔洪胤, 胡亞輝, 王超. 刀具微織構形貌對骨切削溫度的預報模型研究. 機床與液壓, 2015, 43(23): 31 doi: 10.3969/j.issn.1001-3881.2015.23.008 [19] He L. Finite Element Analysis and Experimental Research of Cortical Bone Drilling Performance Based on Orthotropic Analysis[Dissertation]. Tianjin: Tianjin University of Technology, 2016何玲. 基于正交各向異性分析的皮質骨鉆削的仿真與實驗研究[學位論文]. 天津: 天津理工大學, 2016 [20] Augustin G, Davila S, Mihoci K, et al. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg, 2008, 128(1): 71 http://www.ncbi.nlm.nih.gov/pubmed/17762937 [21] Karaca F, Aksakal B, Kom M. Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study. Med Eng Phys, 2011, 33(10): 1221 doi: 10.1016/j.medengphy.2011.05.013 [22] Sezek S, Aksakal B, Karaca F. Influence of drill parameters on bone temperature and necrosis: a FEM modelling and in vitro experiments. Comput Mater Sci, 2012, 60: 13 doi: 10.1016/j.commatsci.2012.03.012 [23] Lee J E, Rabin Y, Ozdoganlar O B. A new thermal model for bone drilling with applications to orthopaedic surgery. Med Eng Phys, 2011, 33(10): 1234 doi: 10.1016/j.medengphy.2011.05.014 [24] Pandey R K, Panda S S. Drilling of bone: a comprehensive review. J Clin Orthop Trauma, 2013, 4(1): 15 doi: 10.1016/j.jcot.2013.01.002 [25] Augustin G, Zigman T, Davila S, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech, 2012, 27(4): 313 doi: 10.1016/j.clinbiomech.2011.10.010 [26] Hillery M T, Shuaib I. Temperature effects in drilling of human and bovine bone. J Mater Process Technol, 1999, 92-93: 302 doi: 10.1016/S0924-0136(99)00155-7 [27] Karmani S, Lam F. The design and function of surgical drills and K-wires. Curr Orthop, 2004, 18(6): 484 doi: 10.1016/j.cuor.2004.12.011 [28] Bertollo N, Milne H R M, Ellis L P, et al. A comparison of the thermal properties of 2-and 3-fluted drills and the effects on bone cell viability and screw pull-out strength in an ovine model. Clin Biomech, 2010, 25(6): 613 doi: 10.1016/j.clinbiomech.2010.02.007 [29] Lee J E, Ozdoganlar B, Rabin Y. An experimental investigation on thermal exposure during bone drilling. Med Eng Phys, 2012, 34(10): 1510 doi: 10.1016/j.medengphy.2012.03.002 [30] Udiljak T, Ciglar D, Skoric S. Investigation into bone drilling and thermal bone necrosis. Adv Prod Eng Manage, 2007, 2(3): 103 http://www.researchgate.net/publication/281153908_Investigation_into_bone_drilling_and_thermal_bone_necrosis [31] Karmani S. The thermal properties of bone and the effects of surgical intervention. Curr Orthop, 2006, 20(1): 52 doi: 10.1016/j.cuor.2005.09.011 [32] Lughmani W A, Bouazza-Marouf K, Ashcroft I. Finite element modeling and experimentation of bone drilling forces. J Phys Conf Ser, 2013, 451: 012034 doi: 10.1088/1742-6596/451/1/012034 [33] Tu Y K, Chen L W, Ciou J S, et al. Finite element simulations of bone temperature rise during bone drilling based on a bone analog. J Med Biol Eng, 2013, 33(3): 269 doi: 10.5405/jmbe.1366 [34] Alam K, Khan M, Silberschmidt V V. 3D finite-element modelling of drilling cortical bone: temperature analysis. J Med Biol Eng, 2014, 34(6): 618 http://www.researchgate.net/publication/259669939_3D_Finite-Element_Modelling_of_Drilling_Cortical_Bone_Temperature_Analysis [35] Xu L L, Wang C Y, Jiang M, et al. Drilling force and temperature of bone under dry and physiological drilling conditions. Chin J Mech Eng, 2014, 27(6): 1240 doi: 10.3901/CJME.2014.0912.151 [36] Li X S, Zhu W, Wang J Q, et al. Optimization of bone drilling process based on finite element analysis. Appl Therm Eng, 2016, 108: 211 doi: 10.1016/j.applthermaleng.2016.07.125 [37] Sui J B, Sugita N, Ishii K, et al. Mechanistic modeling of bonedrilling process with experimental validation. J Mater Process Technol, 2014, 214(4): 1018 doi: 10.1016/j.jmatprotec.2013.11.001 [38] Sui J B, Sugita N, Mitsuishi M. Thermal modeling of temperature rise for bone drilling with experimental validation. J Manuf Sci Eng, 2015, 137(6): 061008 doi: 10.1115/1.4030880 [39] Tai B L, Palmisano A C, Belmont B, et al. Numerical evaluation of sequential bone drilling strategies based on thermal damage. Med Eng Phys, 2015, 37(9): 855 doi: 10.1016/j.medengphy.2015.06.002 [40] Tai B L, Zhang L H, Wang A, et al. Neurosurgical bone grinding temperature monitoring. Procedia CIRP, 2013, 5: 226 doi: 10.1016/j.procir.2013.01.045 [41] Zhang L H, Tai B L, Wang G J, et al. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery. Med Eng Phys, 2013, 35(10): 1391 doi: 10.1016/j.medengphy.2013.03.023 [42] Zhu Z. Experimental Study on Bone Tissue Grinding Characteristics[Dissertation]. Xiamen: Huaqiao University, 2014朱錚. 骨組織磨削特性實驗研究[學位論文]. 廈門: 華僑大學, 2014 [43] Shin H C, Yoon Y S. Bone temperature estimation during orthopaedic round bur milling operations. J Biomech, 2006, 39(1): 33 doi: 10.1016/j.jbiomech.2004.11.004 [44] Sugita N, Osa T, Mitsuishi M. Analysis and estimation of cutting-temperature distribution during end milling in relation to orthopedic surgery. Med Eng Phys, 2009, 31(1): 101 doi: 10.1016/j.medengphy.2008.05.001 [45] Sugita N, Ishii K, Sui J B, et al. Multi-grooved cutting tool to reduce cutting force and temperature during bone machining. CIRP Ann, 2014, 63(1): 101 doi: 10.1016/j.cirp.2014.03.069 [46] Liao Z R, Axinte D A, Gao D. A novel cutting tool design to avoid surface damage in bone machining. Int J Mach Tools Manuf, 2017, 116: 52 doi: 10.1016/j.ijmachtools.2017.01.003 [47] Mason T J. Therapeutic ultrasound an overview. Ultrason Sonochem, 2011, 18(4): 847 doi: 10.1016/j.ultsonch.2011.01.004 [48] Crum L, Bailey M, Hwang J H, et al. Therapeutic ultrasound: Recent trends and future perspectives. Phys Procedia, 2010, 3(1): 25 doi: 10.1016/j.phpro.2010.01.005 [49] Zhang Y, Wang C Y, Zhou S B, et al. A comparison review on orthopedic surgery using piezosurgery and conventional tools. Procedia CIRP, 2017, 65: 99 doi: 10.1016/j.procir.2017.04.024 [50] Zhou C, Yang F B, Wang B, et al. Piezoelectric surgery in intraspinal tumor resection. J Third Mil Med Univ, 2016, 38(2): 200 https://www.cnki.com.cn/Article/CJFDTOTAL-DSDX201602019.htm周沖, 楊福兵, 王斌, 等. 超聲骨刀在椎管內腫瘤切除術中的應用. 第三軍醫大學學報, 2016, 38(2): 200 https://www.cnki.com.cn/Article/CJFDTOTAL-DSDX201602019.htm [51] Wang B L, Yang C, Cai X Y. Application overview of piezosurgery in oral and maxillofacial surgery. Chin J Dent Mater Dev, 2014, 23(2): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-KCCL201402011.htm王保利, 楊馳, 蔡協藝. 超聲骨刀在口腔頜面外科中的應用概況. 口腔材料器械雜志, 2014, 23(2): 101 https://www.cnki.com.cn/Article/CJFDTOTAL-KCCL201402011.htm [52] Khambay B S, Walmsley A D. Investigations into the use of an ultrasonic chisel to cut bone, Part 1: forces applied by clinicians. J Dent, 2000, 28(1): 31 doi: 10.1016/S0300-5712(99)00043-3 [53] Khambay B S, Walmsley A D. Investigations into the use of an ultrasonic chisel to cut bone, Part 2: cutting ability. J Dent, 2000, 28(1): 39 doi: 10.1016/S0300-5712(99)00044-5 [54] Alam K. Experimental and Numerical Analysis of Conventional and Ultrasonically-assisted Cutting of Bone[Dissertation]. Loughborough: Loughborough University, 2009 [55] Alam K, Khan M, Silberschmidt V V. Analysis of forces in conventional and ultrasonically assisted plane cutting of cortical bone. Proc Inst Mech Eng Part H J Eng Med, 2013, 227(6): 636 doi: 10.1177/0954411913485042 [56] Alam K, Silberschmidt V V. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography. Technol Health Care, 2014, 22(2): 243 doi: 10.3233/THC-140813 [57] Sugita N, Shu L M, Shimada T, et al. Novel surgical machining via an impact cutting method based on fracture analysis with a discontinuum bone model. CIRP Ann, 2017, 66(1): 65 doi: 10.1016/j.cirp.2017.04.028 [58] Gu Y J. Research on Ultrasonic Vibration Systems and Development on Series of Ultrasonic Surgical Instruments[Dissertation]. Beijing: Tsinghua University, 1996顧煜炯. 超聲振動系統的研究及系列超聲手術刀的研制[學位論文]. 北京: 清華大學, 1996 [59] Chen Y, Zhou Z Y, Zhang G H. Effects of different tissue loads on high power ultrasonic surgery scalpel. Ultrasound Med Biol, 2006, 32(3): 415 doi: 10.1016/j.ultrasmedbio.2005.12.012 [60] Zhang G H, Chen Y. Research on tissue load characteristics of ultrasonic bone transducer. Piezoelectr Acoustoopt, 2011, 33(6): 923 doi: 10.3969/j.issn.1004-2474.2011.06.020章剛華, 陳穎. 超聲骨科換能器的組織負載特性研究. 壓電與聲光, 2011, 33(6): 923 doi: 10.3969/j.issn.1004-2474.2011.06.020 [61] Wang Y, Cao M, Zhao X R, et al. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone. Med Eng Phys, 2014, 36(11): 1408 doi: 10.1016/j.medengphy.2014.04.007 -