<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Al?Zn?Mg?Cu?Zr?(Sc)合金攪拌摩擦焊接頭組織和性能

王宇 熊柏青 李志輝 溫凱 李錫武 張永安 閆麗珍 劉紅偉 閆宏偉

王宇, 熊柏青, 李志輝, 溫凱, 李錫武, 張永安, 閆麗珍, 劉紅偉, 閆宏偉. Al?Zn?Mg?Cu?Zr?(Sc)合金攪拌摩擦焊接頭組織和性能[J]. 工程科學學報, 2020, 42(5): 612-619. doi: 10.13374/j.issn2095-9389.2019.05.29.001
引用本文: 王宇, 熊柏青, 李志輝, 溫凱, 李錫武, 張永安, 閆麗珍, 劉紅偉, 閆宏偉. Al?Zn?Mg?Cu?Zr?(Sc)合金攪拌摩擦焊接頭組織和性能[J]. 工程科學學報, 2020, 42(5): 612-619. doi: 10.13374/j.issn2095-9389.2019.05.29.001
WANG Yu, XIONG Bai-qing, LI Zhi-hui, WEN Kai, LI Xi-wu, ZHANG Yong-an, YAN Li-zhen, LIU Hong-wei, YAN Hong-wei. Microstructure and properties of friction stir welded joints for Al?Zn?Mg?Cu?Zr?(Sc) alloys[J]. Chinese Journal of Engineering, 2020, 42(5): 612-619. doi: 10.13374/j.issn2095-9389.2019.05.29.001
Citation: WANG Yu, XIONG Bai-qing, LI Zhi-hui, WEN Kai, LI Xi-wu, ZHANG Yong-an, YAN Li-zhen, LIU Hong-wei, YAN Hong-wei. Microstructure and properties of friction stir welded joints for Al?Zn?Mg?Cu?Zr?(Sc) alloys[J]. Chinese Journal of Engineering, 2020, 42(5): 612-619. doi: 10.13374/j.issn2095-9389.2019.05.29.001

Al?Zn?Mg?Cu?Zr?(Sc)合金攪拌摩擦焊接頭組織和性能

doi: 10.13374/j.issn2095-9389.2019.05.29.001
基金項目: 國家重點研發計劃資助項目(2016YFB0300903,2016YFB0300803)
詳細信息
    通訊作者:

    E-mail: lzh@grinm.com

  • 中圖分類號: TG146.2

Microstructure and properties of friction stir welded joints for Al?Zn?Mg?Cu?Zr?(Sc) alloys

More Information
  • 摘要: 利用光學顯微鏡、透射電子顯微鏡、顯微硬度計和萬能拉伸試驗機等分析手段,表征了Al?Zn?Mg?Cu?Zr?(Sc)合金攪拌摩擦焊(FSW)接頭的顯微組織和性能,探究了Sc元素對改善超高強Al?Zn?Mg?Cu?Zr合金焊接性能的作用機制。結果表明:Al?Zn?Mg?Cu?Zr?(Sc)合金焊接接頭具有相似的組織特征,焊核區為動態再結晶組織,由細小均勻的等軸晶組成,包含較高密度的位錯線,大部分時效析出相回溶;熱力影響區晶粒被拉長,位錯密度更高,殘留的時效析出相顯著粗化;熱影響區保留與母材相同的晶粒形態,大部分時效析出的η'相發生長大,少部分粗化成η相。添加質量分數0.17%的Sc,可以使合金FSW接頭抗拉強度提升43 MPa,屈服強度提升23 MPa,斷后伸長率改善2.3%,焊接系數達到74.1%。Al3(Sc,Zr)二次析出相可以強烈抑制位錯、亞晶界、晶界的移動,細化晶粒的同時保留大量的亞結構,且自身可發揮Orowan彌散強化作用。因此,可通過細晶強化、亞結構強化和彌散強化三種方式顯著提高合金FSW接頭的力學性能。

     

  • 圖  1  拉伸力學性能測試取樣示意圖(a)和試樣尺寸示意圖(b)

    Figure  1.  Schematic diagram (a) of the specimen sampling from the weld plates and dimensional schematics (b) of the tensile specimens tested in this work

    圖  2  Al?Zn?Mg?Cu?Zr?(Sc)合金母材的選區電子衍射花樣。(a, b) 1#合金;(c, d) 2#合金

    Figure  2.  SAED patterns of base material for Al?Zn?Mg?Cu?Zr?(Sc) alloys: (a, b) Alloy 1#; (c, d) Alloy 2#

    圖  3  Al?Zn?Mg?Cu?Zr?(Sc)合金母材的晶內和晶界析出相。(a, b) 1#合金;(c, d) 2#合金

    Figure  3.  Precipitates distributed in the grain and along the boundary of the base material for Al?Zn?Mg?Cu?Zr?(Sc) alloys: (a, b) Alloy 1#; (c, d) Alloy 2#

    圖  4  2#合金FSW接頭。(a) 橫截面形貌;(b) 區域劃分

    Figure  4.  FSW joints for Alloy 2: (a) cross-sectional appearances; (b) divided zones

    圖  5  1#和 2#合金FSW接頭的金相顯微組織。(a, b) WNZ;(c, d) TMAZ;(e, f) HAZ;其中,1#合金(a, c, e),2#合金(b, d, f)

    Figure  5.  Optical microstructure of the FSW joints for Alloy 1 and Alloy 2: (a, b) WNZ; (c, d) TMAZ; (e, f) HAZ; among them, Alloy 1# (a, c, e) and Alloy 2# (b, d, f)

    圖  6  1#和2#合金FSW接頭位錯觀察。(a, b) WNZ;(c, d) TMAZ;(e, f) HAZ;其中,1#合金(a, c, e),2#合金(b, d, f)

    Figure  6.  Dislocations observation of the FSW joints for Alloy 1 and Alloy 2: (a, b) WNZ, (c, d) TMAZ, (e, f) HAZ; among them, Alloy 1# (a, c, e) and Alloy 2# (b, d, f)

    圖  7  1#和2#合金FSW接頭的選區電子衍射花樣和析出相形貌。(a, b) WNZ;(c, d) TMAZ;(e, f) HAZ;其中,1#合金(a, c, e),2#合金(b, d, f)

    Figure  7.  SAED patterns and precipitates of the FSW joints for Alloy 1 and Alloy 2: (a, b) WNZ, (c, d) TMAZ, (e, f) HAZ; among them, Alloy 1# (a, c, e) and Alloy 2# (b, d, f)

    圖  8  研究合金的FSW接頭顯微硬度分布圖

    Figure  8.  Micro-hardness profile of the FSW joints for the investigated alloys

    圖  9  2#合金FSW接頭處的Al3(Sc,Zr)形貌。(a) BM;(b) WNZ

    Figure  9.  Morphologies of Al3(Sc,Zr) particles of the FSW joint for Alloy 2: (a) BM; (b) WNZ

    表  1  合金的化學成分及編號

    Table  1.   Chemical composition and designation for the tested alloys

    NumberClassificationComposition (mass fraction) / %
    ZnMgCuZrScSiFeAl
    1#Nominal9.22.21.50.110≤0.08≤0.10Bal.
    Measured9.422.331.620.120
    2#Nominal9.22.21.50.110.17
    Measured9.842.261.580.120.17
    下載: 導出CSV

    表  2  研究合金的母材和FSW接頭拉伸力學性能

    Table  2.   Tensile properties of the base material and the FSW joint for the investigated alloys

    NumberUltimate tensile strength/MPaYield strength/MPaElongation/%Welding coefficient/%Fracture site
    1#-Base material613±8557±118.3±2.1
    1#-Weld joint439±4352±22.0±0.371.6WNZ
    2#-Base material651±2601±77.3±2.9
    2#-Weld joint482±3375±64.3±0.474.1WNZ
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Sharma N, Khan Z A, Siddiquee A N. Friction stir welding of aluminum to copper-an overview. Trans Nonferrous Met Soc China, 2017, 27(10): 2113 doi: 10.1016/S1003-6326(17)60238-3
    [2] Cam G, Mistikoglu S. Recent developments in friction stir welding of Al-alloys. J Mater Eng Perform, 2014, 23(6): 1936 doi: 10.1007/s11665-014-0968-x
    [3] Janaki Ram G D, Mitra T K, Shankar V, et al. Microstructural refinement through inoculation of type 7020 Al?Zn?Mg alloy welds and its effect on hot cracking and tensile properties. J Mater Process Technol, 2003, 142(1): 174 doi: 10.1016/S0924-0136(03)00574-0
    [4] Seshagiri P C, Nair B S, Reddy G M, et al. Improvement of mechanical properties of aluminum-copper alloy (AA2219) GTA welds by Sc addition. Sci Technol Weld Join, 2008, 13(2): 146 doi: 10.1179/174329308X283866
    [5] Tong J H, Li L, Deng D, et al. Friction stir welding of 6061-T6 aluminum alloy thin sheets. J Univ Sci Technol Beijing, 2008, 30(9): 1011 doi: 10.3321/j.issn:1001-053X.2008.09.010

    佟建華, 李煉, 鄧冬, 等. 6061-T6鋁合金薄板的攪拌摩擦焊接. 北京科技大學學報, 2008, 30(9):1011 doi: 10.3321/j.issn:1001-053X.2008.09.010
    [6] Zhang K, Jiang H T, Meng Q, et al. Effect of the welding speed on the microstructure and the mechanical properties of robotic friction stir welded AA7B04 aluminum alloy. Chin J Eng, 2018, 40(12): 1525

    張坤, 江海濤, 孟強, 等. 焊接速度對機器人攪拌摩擦焊AA7B04鋁合金接頭組織和力學性能的影響. 工程科學學報, 2018, 40(12):1525
    [7] Norman A F, Hyde K, Costello F, et al. Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding. Mater Sci Eng A, 2003, 354(1-2): 188 doi: 10.1016/S0921-5093(02)00942-5
    [8] Chen Y, Liu C Y, Zhang B, et al. Effects of friction stir processing and minor Sc addition on the microstructure, mechanical properties, and damping capacity of 7055 Al alloy. Mater Charact, 2018, 135: 25 doi: 10.1016/j.matchar.2017.11.030
    [9] Zhao Z H, Xu Z, Wang G S. Effect of Sc, Zr, Er in ER5356 welding wire on mechanical properties of welded joint of 7A52 aluminum alloy. Chin J Mater Res, 2013, 27(3): 287

    趙志浩, 徐振, 王高松. ER5356焊絲中Sc、Zr、Er對7A52鋁合金焊接性能的影響. 材料研究學報, 2013, 27(3):287
    [10] Yuan H X. Study on Effect of Welding Materials and Procedures on Weldability of Aluminum Alloys[Dissertation]. Chongqing: Chongqing University, 2006

    元恒新. 焊接材料及工藝對鋁合金焊接性能的影響[學位論文]. 重慶: 重慶大學, 2006
    [11] He Z B, Peng Y Y, Yin Z M, et al. Comparison of FSW and TIG welded joints in Al?Mg?Mn?Sc?Zr alloy plates. Trans Nonferrous Metal Soc China, 2011, 21(8): 1685 doi: 10.1016/S1003-6326(11)60915-1
    [12] Mishra R S, Ma Z Y. Friction stir welding and processing. Mater Sci Eng R, 2005, 50(1-2): 1 doi: 10.1016/j.mser.2005.07.001
    [13] Wang Y, Xiong B Q, Li Z H, et al. Hot compressive deformation behavior and microstructure characterization of new ultra strength Al?Zn?Mg?Cu alloy. J Mater Eng, 2019, 47(2): 99 doi: 10.11868/j.issn.1001-4381.2018.000699

    王宇, 熊柏青, 李志輝, 等. 新型超高強Al?Zn?Mg?Cu合金熱壓縮變形行為及微觀組織特征. 材料工程, 2019, 47(2):99 doi: 10.11868/j.issn.1001-4381.2018.000699
    [14] Sha G, Cerezo A. Early-stage precipitation in Al?Zn?Mg?Cu alloy (7050). Acta Mater, 2004, 52(15): 4503 doi: 10.1016/j.actamat.2004.06.025
    [15] Li X Z, Hansen V, Gj?nnes J, et al. HREM study and structure modeling of the η' phase, the hardening precipitates in commercial Al?Zn?Mg alloys. Acta Mater, 1999, 47(9): 2651 doi: 10.1016/S1359-6454(99)00138-X
    [16] Habiby F, Haq A U, Hashmi F H, et al. Some remarks on the hardness and yield strength of aluminum alloy 7075 as a function of retrogression time. Metall Mater Trans A, 1987, 18(2): 350 doi: 10.1007/BF02825718
    [17] Benavides S, Li Y, Murr L E, et al. Low-temperature friction-stir welding of 2024 aluminum. Scripta Mater, 1999, 41(8): 809 doi: 10.1016/S1359-6462(99)00226-2
    [18] Sato Y S, Kokawa H, Enomoto M, et al. Microstructural evolution of 6063 aluminum during friction-stir welding. Metall Mater Trans A, 1999, 30(9): 2429 doi: 10.1007/s11661-999-0251-1
    [19] Mahoney M W, Rhodes C G, Flintoff J G, et al. Properties of friction-stir-welded 7075 T651 aluminum. Metall Mater Trans A, 1998, 29A: 1955
    [20] Wang Y, Xiong B Q, Li Z H, et al. As-cast microstructure of Al?Zn?Mg?Cu?Zr alloy containing trace amount of Sc. Rare Met, 2019, 38(4): 343 doi: 10.1007/s12598-018-1136-5
    [21] Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminum. Acta Mater, 2003, 51(3): 713 doi: 10.1016/S1359-6454(02)00449-4
    [22] Adler P N, Delasi R. Calorimetric studies of 7000 series aluminum alloys: II. Comparison of 7075, 7050 and RX720 alloys. Metall Trans A, 1977, 8(7): 1185 doi: 10.1007/BF02667404
    [23] Li Z M. Study on the Microstructure and Properties of Al−Zn−Mg Alloy with Scandium Addition[Dissertation]. Beijing: University of Chinese Academic Science, 2018

    李召明. Sc對Al−Zn−Mg合金組織和性能影響的研究[學位論文]. 北京: 中國科學院大學, 2018
    [24] Deng Y, Peng B, Xu G F, et al. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al?Zn?Mg alloys. Mater Sci Eng A, 2015, 639: 500 doi: 10.1016/j.msea.2015.05.052
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  1997
  • HTML全文瀏覽量:  1036
  • PDF下載量:  36
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-05-29
  • 刊出日期:  2020-05-01

目錄

    /

    返回文章
    返回