<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

熱軋7075/AZ31B復合板的顯微組織及結合性能

吳宗河 祁梓宸 許朋朋 趙云鵬 肖宏

吳宗河, 祁梓宸, 許朋朋, 趙云鵬, 肖宏. 熱軋7075/AZ31B復合板的顯微組織及結合性能[J]. 工程科學學報, 2020, 42(5): 620-627. doi: 10.13374/j.issn2095-9389.2019.05.25.002
引用本文: 吳宗河, 祁梓宸, 許朋朋, 趙云鵬, 肖宏. 熱軋7075/AZ31B復合板的顯微組織及結合性能[J]. 工程科學學報, 2020, 42(5): 620-627. doi: 10.13374/j.issn2095-9389.2019.05.25.002
WU Zong-he, QI Zi-chen, XU Peng-peng, ZHAO Yun-peng, XIAO Hong. Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets[J]. Chinese Journal of Engineering, 2020, 42(5): 620-627. doi: 10.13374/j.issn2095-9389.2019.05.25.002
Citation: WU Zong-he, QI Zi-chen, XU Peng-peng, ZHAO Yun-peng, XIAO Hong. Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets[J]. Chinese Journal of Engineering, 2020, 42(5): 620-627. doi: 10.13374/j.issn2095-9389.2019.05.25.002

熱軋7075/AZ31B復合板的顯微組織及結合性能

doi: 10.13374/j.issn2095-9389.2019.05.25.002
基金項目: 國家自然科學基金資助項目(51474190)
詳細信息
    通訊作者:

    E-mail:xhh@ysu.edu.cn

  • 中圖分類號: TG142.71

Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets

More Information
  • 摘要: 為了研究熱軋鋁/鎂復合板結合強度的變化規律,本文綜合考慮壓下率、軋制溫度和軋制速度等多種軋制參數,單道次熱軋制備了7075 Al/AZ31B Mg復合板。結果表明:在復合板軋制過程中由于熱和強變形作用組織發生了動態再結晶,且增大軋制速度有助于鎂基體產生完全動態再結晶。在相同軋制溫度下,鋁鎂復合板結合強度均隨壓下率增加先升高后降低;強度升高是由于界面元素擴散寬度的增大和鎂合金近界面晶粒組織的細化所致,強度降低是由于大變形導致鎂基體近界面處產生裂縫,以及塑性功產生熱量過多使得鎂基體溫度升高導致的鎂側晶粒長大所致。對復合板進行拉剪實驗,鋁鎂結合界面剪切強度較低時,斷裂發生在復合界面處且成脆性斷裂特征,強度較高時斷口形貌呈韌性斷裂特征,斷裂發生在鎂基體側。

     

  • 圖  1  拉伸剪切試驗樣品示意圖

    Figure  1.  Schematic of the tensile shear test sample

    圖  2  不同軋制速度下復合板鎂基體金相組織(350 ℃,壓下率45%)。 (a) 50 mm·s?1;(b) 100 mm·s?1;(c) 150 mm·s?1

    Figure  2.  Metallographic structure of the Mg composite matrix under different rolling speeds (350 ℃, 45% reduction rate): (a) 50 mm·s?1; (b) 100 mm·s?1; (c) 150 mm·s?1

    圖  3  不同工藝下7075/AZ31B復合板的結合強度

    Figure  3.  Bonding strength of the 7075/AZ31B clad sheet under different processes

    圖  4  不同工藝下復合板的鎂側金相組織。(a) 350 ℃+40%壓下率;(b) 350 ℃ +62%壓下率;(c) 350 ℃ + 70%壓下率;(d) 370 ℃ +40%壓下率;(e) 370 ℃ +63%壓下率;(f) 420 ℃ +61%壓下率

    Figure  4.  Metallographic structure of the Mg alloy side of the composite board under different processes: (a) 350 ℃ + 40% reduction rate; (b) 350 ℃ + 62% reduction rate; (c) 350 ℃ + 70% reduction rate; (d) 370 ℃ + 40% reduction rate; (e) 370 ℃ + 63% reduction rate; (f) 420 ℃ + 61% reduction rate

    圖  5  在350 ℃、62%壓下率下復合板界面的元素線掃描曲線圖

    Figure  5.  Elemental line scanning curve of the composite plate interface at 350 ℃ with 62% reduction rate

    圖  6  350 ℃復合板在不同壓下率下的擴散層寬度

    Figure  6.  Diffusion layer width of the composite plate at 350 ℃ with the different reduction rates

    圖  7  復合板在350 ℃不同壓下率下的結合界面。(a) 62%;(b) 70%

    Figure  7.  Bonding interface of the composite plate at 350 ℃ under different reduction rates: (a) 62%; (b) 70%

    圖  8  350 ℃不同壓下率下斷口的掃描電鏡圖像。(a) 40%/7075側;(b) 40%/AZ31B側;(c) 62%/7075側;(d) 62%/AZ31B側;(e) 70%/7075側;(f) 70%/AZ31B側

    Figure  8.  SEM image of the fracture at 350 ℃ under different reduction rates: (a) 40%/7075 side; (b) 40%/AZ31B side; (c) 62%/7075 side; (d) 62%/AZ31B side; (e) 70%/7075 side; (f) 70%/AZ31B side

    圖  9  復合板350 ℃不同壓下率下7075側斷口的面掃描圖。(a) 40%;(b) 62%;(c) 70%

    Figure  9.  EDS mapping images of the 7075 side for composite plates at 350 ℃ under different reduction rates: (a) 40%; (b) 62%; (c) 70%

    表  1  鋁合金7075和鎂合金AZ31B的化學成分(質量分數)

    Table  1.   Chemical composition of Al alloy 7075 sheet and Mg alloy AZ31B sheet %

    MaterialsFeCuTiCrZnSiMnMgAlCaZnBe
    7075-T60.51.60.20.235.60.40.32.5Bal.
    AZ31B0.030.335Bal.3.10.050.820.1
    下載: 導出CSV

    表  2  元素點掃描測定Al和Mg的元素含量(質量分數)

    Table  2.   Contents of Al and Mg determined by elemental point scanning %

    ElementPoint 1Point 2Point 3Point 4Point 5Point 6
    Al91.278.22.34.766.539.9
    Mg8.821.897.795.333.560.1
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Dai J, Huang J, Li Z G, et al. Effects of heat input on microstructure and mechanical properties of laser-welded Mg-rare earth alloy. J Mater Eng Perform, 2013, 22(1): 64 doi: 10.1007/s11665-012-0173-8
    [2] Chen Z H. Deformed Magnesium Alloy. Beijing: Chemical Industry Press, 2005

    陳振華. 變形鎂合金. 北京: 化學工業出版社, 2005
    [3] Kojima Y, Kamado S. Fundamental magnesium researches in Japan. Mater Sci Forum, 2005, 488-489: 9 doi: 10.4028/www.scientific.net/MSF.488-489.9
    [4] Baghni I M, Wu Y S, Li J Q, et al. Mechanical properties and potential applications of magnesium alloys. Trans Nonferrous Met Soc China, 2003, 13(6): 1253
    [5] Schl?gl C M, Planitzer C, Harrer O, et al. Production and formability of roll bounded magnesium (AZ31)-aluminium (1050)-composites. BHM-Berg und Huttenmannische Monatshefte, 2011, 156(7): 249 doi: 10.1007/s00501-011-0003-6
    [6] Ikpi M E, Dong J H, Ke W. Effect of cadmium addition on the galvanic corrosion of AM60 magnesium alloy in 0.1 M sodium chloride solution. Solid State Phenomena, 2015, 227: 71 doi: 10.4028/www.scientific.net/SSP.227.71
    [7] Fang D Q, Ma N, Cai K L, et al. Age hardening behaviors, mechanical and corrosion properties of deformed Mg–Mn–Sn sheets by pre-rolled treatment. Mater Des, 2014, 54: 72 doi: 10.1016/j.matdes.2013.08.028
    [8] Hütsch L L, Hütsch J, Herzberg K, et al. Increased room temperature formability of Mg AZ31 by high speed friction stir processing. Mater Des, 2014, 54: 980 doi: 10.1016/j.matdes.2013.08.108
    [9] Zhang T, Shao Y W, Meng G Z, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior. Corros Sci, 2011, 53(5): 1960 doi: 10.1016/j.corsci.2011.02.015
    [10] Yan Y B, Zhang Z W, Shen W, et al. Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate. Mater Sci Eng A, 2010, 527(9): 2241 doi: 10.1016/j.msea.2009.12.007
    [11] Zhang T T, Wang W X, Zhou J, et al. Molecular dynamics simulations and experimental investigations of atomic diffusion behavior at bonding interface in an explosively welded Al/Mg alloy composite plate. Acta Metall Sinica (English Lett), 2017, 30(10): 983 doi: 10.1007/s40195-017-0628-x
    [12] Zhang J, Chi C Z, Cui X L, et al. Microstructure and mechanical properties of 5052/AZ31B/5052 three-layer composite sheet prepared by hot pressing. Forging Stamping Technol, 2018, 43(12): 136

    張晶, 池成忠, 崔曉磊, 等. 熱壓制備5052/AZ31B/5052三層復合板材的微觀組織與力學性能. 鍛壓技術, 2018, 43(12):136
    [13] Jafarian M, Rizi M S, Jafarian M, et al. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding. Mater Sci Eng A, 2016, 666: 372 doi: 10.1016/j.msea.2016.04.011
    [14] Luo C Z, Liang W, Li X R, et al. Study on interface characteristics of Al/Mg/Al composite plates fabricated by two-pass hot rolling. Mater Sci Forum, 2013, 747: 346
    [15] Zhang J J. Preparation of Al/Mg/Al Laminated Composite Fabricated by Hot Rolled and Investigation of Microstructure and Mechanical Properties[Dissertation]. Taiyuan: Taiyuan University of Technology, 2016

    張建軍. Al/Mg/Al熱軋復合板的制備及其微觀組織和力學性能研究[學位論文]. 太原: 太原理工大學, 2016
    [16] Zhang X P, Tan M J, Yang T H, et al. Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated by hot rolling. Bull Mater Sci, 2011, 34(4): 805 doi: 10.1007/s12034-011-0198-x
    [17] Zhang X P, Yang T H, Liu J Q, et al. Mechanical properties of an Al/Mg/Al trilaminated composite fabricated by hot rolling. J Mater Sci, 2010, 45(13): 3457 doi: 10.1007/s10853-010-4373-z
    [18] Chen Z J, Zeng Z, Huang G J, et al. Research on the Al/Mg/Al three-layer clad sheet fabricated by hot roll bonding technology. Rare Met Mater Eng, 2011, 40(Suppl 3): 136
    [19] Liu C Y, Wang Q, Jia Y Z, et al. Microstructures and mechanical properties of Mg/Mg and Mg/Al/Mg laminated composites prepared via warm roll bonding. Mater Sci Eng A, 2012, 556: 1 doi: 10.1016/j.msea.2012.06.046
    [20] Yang X Y, Zhang Z L, Zhang L, et al. Influence of strain rate on dynamic recrystallization behavior of AZ61 magnesium alloy. Trans Nonferrous Met Soc China, 2011, 21(8): 1801 doi: 10.1016/S1003-6326(11)60934-5

    楊續躍, 張之嶺, 張雷, 等. 應變速率對AZ61鎂合金動態再結晶行為的影響. 中國有色金屬學報, 2011, 21(8):1801 doi: 10.1016/S1003-6326(11)60934-5
    [21] Maksoud I A, Ahmed H, R?del J. Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy. Mater Sci Eng A, 2009, 504(1-2): 40 doi: 10.1016/j.msea.2008.10.033
    [22] Santosh R, Das S K, Das G, et al. Three-dimensional thermomechanical simulation and experimental validation on failure of dissimilar material welds. Metall Mater Trans A, 2016, 47(7): 3511 doi: 10.1007/s11661-016-3476-9
    [23] Duan X J, Sheppard T. Simulation and control of microstructure evolution during hot extrusion of hard aluminium alloys. Mater Sci Eng A, 2003, 351(1-2): 282 doi: 10.1016/S0921-5093(02)00840-7
    [24] Sauvage X, Dinda G P, Wilde G. Non-equilibrium intermixing and phase transformation in severely deformed Al/Ni multilayers. Scripta Mater, 2007, 56(3): 181 doi: 10.1016/j.scriptamat.2006.10.021
    [25] Chung C Y, Zhu M, Man C H. Effect of mechanical alloying on the solid state reaction processing of Ni-36.5 at.% Al alloy. Intermetallics, 2002, 10(9): 865 doi: 10.1016/S0966-9795(02)00088-2
    [26] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. Progr Mater Sci, 2000, 45(2): 103 doi: 10.1016/S0079-6425(99)00007-9
    [27] Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu–Fe composite. Acta Mater, 2005, 53(7): 2127 doi: 10.1016/j.actamat.2005.01.024
    [28] Sato K, Yoshiie T, Satoh Y, et al. Simulation of vacancy migration energy in Cu under high strain. Mater Sci Eng A, 2003, 350(1-2): 220 doi: 10.1016/S0921-5093(02)00692-5
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  1391
  • HTML全文瀏覽量:  1048
  • PDF下載量:  39
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-05-25
  • 刊出日期:  2020-05-01

目錄

    /

    返回文章
    返回