<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

協同式多目標自適應巡航控制

章軍輝 李慶 陳大鵬

章軍輝, 李慶, 陳大鵬. 協同式多目標自適應巡航控制[J]. 工程科學學報, 2020, 42(4): 423-433. doi: 10.13374/j.issn2095-9389.2019.05.21.002
引用本文: 章軍輝, 李慶, 陳大鵬. 協同式多目標自適應巡航控制[J]. 工程科學學報, 2020, 42(4): 423-433. doi: 10.13374/j.issn2095-9389.2019.05.21.002
ZHANG Jun-hui, LI Qing, CHEN Da-peng. Multi-objective adaptive cruise control (ACC) algorithm for cooperative ACC platooning[J]. Chinese Journal of Engineering, 2020, 42(4): 423-433. doi: 10.13374/j.issn2095-9389.2019.05.21.002
Citation: ZHANG Jun-hui, LI Qing, CHEN Da-peng. Multi-objective adaptive cruise control (ACC) algorithm for cooperative ACC platooning[J]. Chinese Journal of Engineering, 2020, 42(4): 423-433. doi: 10.13374/j.issn2095-9389.2019.05.21.002

協同式多目標自適應巡航控制

doi: 10.13374/j.issn2095-9389.2019.05.21.002
基金項目: 中國科學院科技服務網絡計劃資助項目(STS計劃);面向智能駕駛的新能源汽車電子開放平臺建設與產業化資助項目(KFJ-STS-ZDTP-045)
詳細信息
    通訊作者:

    E-mail: dpchen@ime.ac.cn

  • 中圖分類號: U461.91

Multi-objective adaptive cruise control (ACC) algorithm for cooperative ACC platooning

More Information
  • 摘要: 針對自動化高速公路(Automated highway system,AHS)車隊穩定性問題,發展了一種多目標自適應巡航控制算法,根據李雅普諾夫(Lyapunov)穩定性理論對該問題進行了量化分析,并給出了同質與異質車隊穩定性的設計要求,基于模型預測控制(Model predictive control,MPC)理論,綜合協調駕駛員期望響應、跟馳安全性、車隊穩定性、車隊整體品質等控制目標,采用加權二次型性能泛函以及線性矩陣不等式約束的形式,將協同式多目標自適應巡航(Adaptive cruise control, ACC)設計問題最終轉化成帶約束的在線凸二次規劃問題。仿真結果表明,相比單車ACC而言,協同ACC的約束空間更為嚴苛,車隊互聯系統穩定性易受車間時距、車隊規模、多目標權重、瞬態工況、車輛異質性等因素的影響,建議在跟馳安全性、車隊穩定性良好的前提下尋求一定的駕乘舒適性與燃油經濟性,以確保車隊整體品質。

     

  • 圖  1  搭載V2V模塊的CACC車隊示意圖

    Figure  1.  Sketch of CACC platoon equipped with V2V real-time communication technology

    圖  2  CACC分層設計

    Figure  2.  Hierarchical architecture of CACC

    圖  3  CACC縱向運動學示意圖

    Figure  3.  Longitudinal inter-vehicle dynamics of CACC

    圖  4  時距${\tau _i}$對同質車隊響應的影響. (a)τi=2.0 s;(b)τi=1.5 s;(c)τi=1.0 s;(d)τi=0.5 s

    Figure  4.  Homogeneous platoon response with time gap ${\tau _i}$: (a) τi=2.0 s; (b) τi=1.5 s; (c) τi=1.0 s; (d) τi=0.5 s

    圖  5  目標權重${w_{\Delta {d_i}}}$對同質車隊響應的影響. (a)${w_{\Delta {d_i}}} = 0.01$;(b)${w_{\Delta {d_i}}} = 0.1$;(c)${w_{\Delta {d_i}}} = 1.0$

    Figure  5.  Homogeneous platoon response with ${w_{\Delta {d_i}}}$: (a) ${w_{\Delta {d_i}}} = 0.01$; (b) ${w_{\Delta {d_i}}} = 0.1$; (c) ${w_{\Delta {d_i}}} = 1.0$

    圖  6  目標權重${w_{{j_i}}}$對同質車隊響應的影響. (a)${w_{{j_i}}} = 0.0006$;(b)${w_{{j_i}}} = 0.001$;(c)${w_{{j_i}}} = 0.0012$

    Figure  6.  Homogeneous platoon response with ${w_{{j_i}}}$: (a) ${w_{{j_i}}} = 0.0006$; (b) ${w_{{j_i}}} = 0.001$; (c) ${w_{{j_i}}} = 0.0012$

    圖  7  時距${\tau _i}$對同質車隊響應的影響. (a)τi=2.0 s;(b)τi=1.5 s;(c)τi=1.0 s;(d)τi=0.5 s

    Figure  7.  Homogeneous platoon response with time gap ${\tau _i}$: (a) τi=2.0 s; (b) τi=1.5 s; (c) τi=1.0 s; (d) τi=0.5 s

    圖  8  時距τi=0.5 s時同質車隊速度傳播情況

    Figure  8.  Propagation velocities of the homogeneous platoon when ${\tau _i}$=0.5 s

    圖  9  時距${\tau _i}$對同質車隊響應的影響. (a)τi=2.0 s;(b)τi=1.5 s;(c)τi=1.0 s;(d)τi=0.5 s

    Figure  9.  Homogeneous platoon response with time gap ${\tau _i}$: (a) τi=2.0 s; (b) τi=1.5 s; (c) τi=1.0 s; (d) τi=0.5 s

    圖  10  異質車隊車距誤差傳播情況. (a)組Ⅰ;(b)組Ⅱ

    Figure  10.  Propagation spacing errors of the heterogeneous platoon: (a) group I; (b) group II

    圖  11  在組Ⅰ時距${\tau _i}$下異質車隊響應. (a)車距誤差;(b)車速

    Figure  11.  Heterogeneous platoon response for group I with the preset time gap: (a) spacing error; (b) velocity

    圖  12  在組Ⅱ時距${\tau _i}$下異質車隊響應. (a)車距誤差;(b)車速

    Figure  12.  Heterogeneous platoon response for group II with the preset time gap: (a) spacing error; (b) velocity

    圖  13  在組Ⅰ時距${\tau _i}$下異質車隊響應. (a)車距誤差;(b)實際車距

    Figure  13.  Heterogeneous platoon response for group I with the preset time gap: (a) spacing error; (b) actual spacing

    圖  14  在組Ⅱ時距${\tau _i}$下異質車隊響應. (a)車距誤差;(b)實際車距

    Figure  14.  Heterogeneous platoon response for group II with the preset time gap: (a) spacing error; (b) actual spacing

    表  1  控制算法仿真參數

    Table  1.   Parameters of the CACC platoon

    ${K_{i,{\rm{L}}}}$${T_{\rm{s}}}$${k_{\rm{d}}}$${k_{\rm{v}}}$${t_{{\rm{TTC}}}}$${d_0}$${d_{{\rm{cr}}}}$p
    1.00.10.020.25?35.05.05
    Ncr?0ρi${w_{\Delta {v_i}}}$${w_{{a_{i,{\rm{des}}}}}}$$w_{{c_i}}$yi,maxyi,min
    110.75diag(3,3,3)3.00.10.01[5.0,1.0,0.6]T[?5.0,?1.0,?0.6]T
    ui,maxui,minΔui,maxΔui,min${\upsilon }_{\max }^{{y_i}}$${\upsilon }_{\min }^{{y_i}}$$\upsilon _{\max }^{{u_i}}$$\upsilon _{\min }^{{u_i}}$
    0.6?0.60.1?0.1[3.0,1.0,0.1]T[?3.0,?1.0,?0.1]T0.1?0.1
    $\upsilon _{\max }^{\Delta {u_i}}$$\upsilon _{\min }^{\Delta {u_i}}$
    0.01?0.01
    下載: 導出CSV

    表  2  同質車隊仿真參數

    Table  2.   Parameters of the homogeneous platoon

    Group No.${T_{i,{\rm{L}}}}$${T_{i,{\rm{D}}}}$${\tau _i}$
    0.4002.0
    0.4001.5
    0.4001.0
    0.4000.5
    下載: 導出CSV

    表  3  異質車隊仿真參數

    Table  3.   Parameters of the heterogeneous platoon

    Vehicle No.${T_{i,{\rm{L}}}}$${T_{i,{\rm{D}}}}$${\tau _i}$
    Group ⅠGroup Ⅱ
    10.4001.51.5
    20.4001.51.5
    30.3601.21.2
    40.3601.21.2
    50.6002.01.0
    60.6002.01.0
    70.5501.81.1
    80.5501.81.1
    90.4001.00.5
    100.4001.00.5
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xiao L Y, Gao F. Practical string stability of platoon of adaptive cruise control vehicles. IEEE Trans Intell Transp Syst, 2011, 12(4): 1184 doi: 10.1109/TITS.2011.2143407
    [2] Kayacan E. Multiobjective H∞ control for string stability of cooperative adaptive cruise control systems. IEEE Trans Intell Transp Syst, 2017, 2(1): 52
    [3] Filho C M, Terra M H, Wolf D F. Safe optimization of highway traffic with robust model predictive control-based cooperative adaptive cruise control. IEEE Trans Intell Transp Syst, 2017, 18(11): 3193 doi: 10.1109/TITS.2017.2679098
    [4] Fernandes P, Nunes U. Multiplatooning leaders positioning and cooperative behavior algorithms of communicant automated vehicles for high traffic capacity. IEEE Trans Intell Transp Syst, 2015, 16(3): 1172 doi: 10.1109/TITS.2014.2352858
    [5] Swaroop D, Rajagopal K R. A review of constant time headway policy for automatic vehicle following // 2001 IEEE Intelligent Transportation Systems Conference Proceedings. Oakland, 2001: 65
    [6] Wu G Q, Zhang L X, Liu Z Y, et al. Research status and development trend of vehicle adaptive cruise control systems. J Tongji Univ Nat Sci, 2017, 45(4): 544

    吳光強, 張亮修, 劉兆勇, 等. 汽車自適應巡航控制系統研究現狀與發展趨勢. 同濟大學學報: 自然科學版, 2017, 45(4):544
    [7] Zhang J H, Li Q, Chen D P. Drivers imitated multi-objective adaptive cruise control algorithm. Control Theory Appl, 2018, 35(6): 769 doi: 10.7641/CTA.2017.70585

    章軍輝, 李慶, 陳大鵬. 仿駕駛員多目標決策自適應巡航魯棒控制. 控制理論與應用, 2018, 35(6):769 doi: 10.7641/CTA.2017.70585
    [8] Zhao J, Masahiro O, Wang T, et al. Impacts of the ACC system on highway traffic safety and capacity. China Mech Eng, 2007, 18(12): 1496 doi: 10.3321/j.issn:1004-132X.2007.12.026

    趙津, 大屋勝敬, 王婷, 等. 自適應巡航系統對高速公路交通安全及流量的影響. 中國機械工程, 2007, 18(12):1496 doi: 10.3321/j.issn:1004-132X.2007.12.026
    [9] Bifulco G N, Pariota L, Simonelli F, et al. Development and testing of a fully adaptive cruise control system. Transp Res Part C Emerg Technol, 2013, 29: 156 doi: 10.1016/j.trc.2011.07.001
    [10] Zhang J H, Li Q, Chen D P. Integrated adaptive cruise control with weight coefficient self-tuning strategy. Appl Sci, 2018, 8(6): 978 doi: 10.3390/app8060978
    [11] Milanes V, Shladover S E, Spring J, et al. Cooperative adaptive cruise control in real traffic situations. IEEE Trans Intell Transp Syst, 2014, 15(1): 296 doi: 10.1109/TITS.2013.2278494
    [12] Zhang J H, Li Q, Chen D P. Multi-objective adaptive cruise control with multi-mode strategy. J Univ Electron Sci Technol China, 2018, 47(3): 368 doi: 10.3969/j.issn.1001-0548.2018.03.008

    章軍輝, 李慶, 陳大鵬. 車輛多模式多目標自適應巡航控制. 電子科技大學學報, 2018, 47(3):368 doi: 10.3969/j.issn.1001-0548.2018.03.008
    [13] Li S B, Li K Q, Rajamani R, et al. Model predictive multi-objective vehicular adaptive cruise control. IEEE Trans Control Syst Technol, 2011, 19(3): 556 doi: 10.1109/TCST.2010.2049203
    [14] Bageshwar V L, Garrard W L, Rajamani R. Model predictive control of transitional maneuvers for adaptive cruise control vehicles. IEEE Trans Veh Technol, 2004, 53(5): 1573 doi: 10.1109/TVT.2004.833625
    [15] Zhang J, Ioannou P A. Longitudinal control of heavy trucks in mixed traffic: Environmental and fuel economy considerations. IEEE Trans Intell Transp Syst, 2006, 7(1): 92 doi: 10.1109/TITS.2006.869597
    [16] Boer E, Nicholas W, Michael M, et al. Driver-model based assessment of behavioral adaptation. Trans Soc Autom Eng Japan, 2006, 37(4): 21
    [17] Zhang J H, Li Q, Chen D P. Vehicle-to-vehicle based multi-objective coordinated adaptive cruise control considering platoon stability. Adv Mech Eng, 2018, 10(10): 1
  • 加載中
圖(14) / 表(3)
計量
  • 文章訪問數:  2545
  • HTML全文瀏覽量:  1668
  • PDF下載量:  96
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-05-21
  • 刊出日期:  2020-04-01

目錄

    /

    返回文章
    返回