<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電化學方法在不銹鋼腐蝕研究中的應用現狀及發展趨勢

王竹 馮喆 張雷 路民旭

王竹, 馮喆, 張雷, 路民旭. 電化學方法在不銹鋼腐蝕研究中的應用現狀及發展趨勢[J]. 工程科學學報, 2020, 42(5): 549-556. doi: 10.13374/j.issn2095-9389.2019.05.15.002
引用本文: 王竹, 馮喆, 張雷, 路民旭. 電化學方法在不銹鋼腐蝕研究中的應用現狀及發展趨勢[J]. 工程科學學報, 2020, 42(5): 549-556. doi: 10.13374/j.issn2095-9389.2019.05.15.002
WANG Zhu, FENG Zhe, ZHANG Lei, LU Min-xu. Current application and development trend in electrochemical measurement methods for the corrosion study of stainless steels[J]. Chinese Journal of Engineering, 2020, 42(5): 549-556. doi: 10.13374/j.issn2095-9389.2019.05.15.002
Citation: WANG Zhu, FENG Zhe, ZHANG Lei, LU Min-xu. Current application and development trend in electrochemical measurement methods for the corrosion study of stainless steels[J]. Chinese Journal of Engineering, 2020, 42(5): 549-556. doi: 10.13374/j.issn2095-9389.2019.05.15.002

電化學方法在不銹鋼腐蝕研究中的應用現狀及發展趨勢

doi: 10.13374/j.issn2095-9389.2019.05.15.002
基金項目: 中央高校基本科研業務費專項資金資助項目(FRF-IC-18-007);中國博士后科學基金資助項目(2019M650487)
詳細信息
    通訊作者:

    E-mail:zhanglei@ustb.edu.cn

  • 中圖分類號: TG142.71

Current application and development trend in electrochemical measurement methods for the corrosion study of stainless steels

More Information
  • 摘要: 電化學手段可以實現對不銹鋼材料的快速評價和腐蝕機理研究,因而受到廣泛應用。在不銹鋼耐蝕性評價方面,最常采用的電化學手段主要有腐蝕電位測試、交流阻抗測試、恒電位極化測試以及循環動電位極化測試。本文分別針對上述四種電化學方法在不銹鋼耐蝕性評價上的應用情況進行了介紹,明確了各種檢測方法的特點。腐蝕電位及交流阻抗測試是無損檢測手段,可以滿足長周期腐蝕監測需求;恒電位極化和循環動電位極化測試可以獲得材料的極化特征參數,有利于對材料的腐蝕機理及耐蝕性進行評價。結合當前的不銹鋼腐蝕研究現狀,展望了電化學方法在腐蝕研究領域的發展趨勢:未來電化學方法將更多作為腐蝕調控手段,需要結合其他檢測技術實現對不銹鋼腐蝕過程的精細分析。

     

  • 圖  1  不銹鋼在125 ℃,Cl?和F?質量濃度均為2.5 g?L?1,SO2分壓為0.1 MPa的溶液中的特征電位圖[2]

    Figure  1.  Characteristic potentials of testing materials in 2.5 g?L?1 Cl? , 2.5 g?L?1 F?, and saturated solution of SO2 at 125 ℃ (0.1 MPa SO2)[2]

    圖  2  304L不銹鋼在60 ℃,質量分數93.5%的H2SO4溶液中的開路電位隨時間的變化情況[9]

    Figure  2.  Potential oscillation of 304L stainless steel in 93.5% sulphuric acid at 60 ℃[9]

    圖  3  常見的等效電路圖[13-14]

    Figure  3.  Equivalent circuits for simulating the EIS results[13-14]

    圖  4  用于測定臨界點蝕溫度的恒電位極化曲線[18]

    Figure  4.  Current density vs time curves for measuring critical pitting temperature[18]

    圖  5  2205雙相不銹鋼在125 ℃,Cl?和F?質量濃度均為2.5 g?L?1,SO2分壓為0.1 MPa的溶液中的循環極化曲線[2]

    Figure  5.  Cyclic polarization curve of 2205 stainless steel in 2.5 g?L?1 Cl?, 2.5 g?L?1 F?, and saturated amine solution of SO2 at 125 ℃ (0.1 MPa SO2)[2]

    圖  6  316L不銹鋼在60 ℃,10 g?L?1 NaCl溶液中的循環動電位極化曲線。H2S/CO2 (分壓比1∶5)總壓為0.3 MPa[17]

    Figure  6.  Cyclic polarization curves of 316L stainless steel in 10 g?L NaCl at 60 ℃ with total pressure of H2S/CO2 (mole ratio is 1∶5) is 0.3 MPa[17]

    圖  7  316L不銹鋼在室溫含NaCl的pH值為12.5的堿性溶液中測得的循環動電位極化曲線[19]

    Figure  7.  Cyclic polarization curves of 316L stainless steel measured in NaCl solutions at ambient temperature and pH value of 12.5[19]

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Huo D X, Liang J L, Li H, et al. Research progress of application of electrochemical corrosion technology. Hot Work Technol, 2017, 46(10): 18

    霍東興, 梁精龍, 李慧, 等. 腐蝕電化學技術應用研究進展. 熱加工工藝, 2017, 46(10):18
    [2] Wang Z, Tang X, Xue J P, et al. The pitting behavior of stainless steels under SO2 environments with Cl? and F? // CORROSION 2017. New Orleans, 2017: NACE-2017-9241
    [3] Choi Y S, Nesic S, Ling S. Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions. Electrochim Acta, 2011, 56(4): 1752 doi: 10.1016/j.electacta.2010.08.049
    [4] Wang Z, Zhang L, Tang X, et al. Investigation of the deterioration of passive films in H2S-containing solutions. Int J Miner Metall Mater, 2017, 24(8): 943 doi: 10.1007/s12613-017-1482-6
    [5] Ding J H, Zhang L, Lu M X, et al. The electrochemical behaviour of 316L austenitic stainless steel in Cl? containing environment under different H2S partial pressures. Appl Surf Sci, 2014, 289: 33 doi: 10.1016/j.apsusc.2013.10.080
    [6] Davoodi A, Pakshir M, Babaiee M, et al. A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media. Corros Sci, 2011, 53(1): 399 doi: 10.1016/j.corsci.2010.09.050
    [7] Rhodes P R. Environment-assisted cracking of corrosion-resistant alloys in oil and gas production environments: A review. Corrosion, 2001, 57(11): 923 doi: 10.5006/1.3290320
    [8] Jones S, Li Y X, Coley K S, et al. Corrosion potential oscillations of nickel-containing stainless steel in concentrated sulphuric acid: II Mechanism and kinetic modelling. Corros Sci, 2010, 52(1): 250 doi: 10.1016/j.corsci.2009.09.012
    [9] Li Y X, Ives M B, Coley K S, et al. Corrosion of nickel-containing stainless steel in concentrated sulphuric acid. Corros Sci, 2004, 46(8): 1969 doi: 10.1016/j.corsci.2003.10.017
    [10] Shen C, Xia D H, Fan H Q, et al. Passivation degradation of Alloy 800 in boiling solution containing thiosulphate. Electrochim Acta, 2017, 233: 13 doi: 10.1016/j.electacta.2017.03.037
    [11] Abelev E, Sellberg J, Ramanarayanan T A, et al. Effect of H2S on Fe corrosion in CO2-saturated brine. J Mater Sci, 2009, 44(22): 6167 doi: 10.1007/s10853-009-3854-4
    [12] Ben Salah M, Sabot R, Refait P, et al. Passivation behaviour of stainless steel (UNS N-08028) in industrial or simplified phosphoric acid solutions at different temperatures. Corros Sci, 2015, 99: 320 doi: 10.1016/j.corsci.2015.07.025
    [13] Ge H H, Zhou G D, Wu W Q. Passivation model of 316 stainless steel in simulated cooling water and the effect of sulfide on the passive film. Appl Surf Sci, 2003, 211(1-4): 321 doi: 10.1016/S0169-4332(03)00355-6
    [14] Duarte R G, Castela A S, Neves R, et al. Corrosion behavior of stainless steel rebars embedded in concrete: an electrochemical impedance spectroscopy study. Electrochim Acta, 2014, 124: 218 doi: 10.1016/j.electacta.2013.11.154
    [15] Luo H, Dong C F, Xiao K, et al. The passive behaviour of ferritic stainless steel containing alloyed tin in acidic media. RSC Adv, 2016, 6(12): 9940 doi: 10.1039/C5RA23698C
    [16] Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials. Appl Surf Sci, 2017, 396: 144 doi: 10.1016/j.apsusc.2016.11.046
    [17] Wang Z, Zhang L, Tang X, et al. The surface characterization and passive behavior of Type 316L stainless steel in H2S-containing conditions. Appl Surf Sci, 2017, 423: 457 doi: 10.1016/j.apsusc.2017.06.214
    [18] Ebrahimi N, Momeni M, Kosari A, et al. A comparative study of critical pitting temperature (CPT) of stainless steels by electrochemical impedance spectroscopy (EIS), potentiodynamic and potentiostatic techniques. Corros Sci, 2012, 59: 96 doi: 10.1016/j.corsci.2012.02.026
    [19] Wang Z, Zhou Z Q, Zhang L, et al. Effect of pH on the electrochemical behaviour and passive film composition of 316L stainless steel. Acta Metall Sin (Engl Lett), 2019, 32(5): 585 doi: 10.1007/s40195-018-0794-5
    [20] Wang Z, Zhang L, Zhang Z R, et al. Combined effect of pH and H2S on the structure of passive film formed on type 316L stainless steel. Appl Surf Sci, 2018, 458: 686 doi: 10.1016/j.apsusc.2018.07.122
    [21] Fajardo S, Bastidas D M, Ryan M P, et al. Low-nickel stainless steel passive film in simulated concrete pore solution: A SIMS study. Appl Surf Sci, 2010, 256(21): 6139 doi: 10.1016/j.apsusc.2010.03.140
    [22] Alvarez S M, Bautista A, Velasco F. Corrosion behaviour of corrugated lean duplex stainless steels in simulated concrete pore solutions. Corros Sci, 2011, 53(5): 1748 doi: 10.1016/j.corsci.2011.01.050
    [23] Hamada E, Yamada K, Nagoshi M, et al. Direct imaging of native passive film on stainless steel by aberration corrected STEM. Corros Sci, 2010, 52(12): 3851 doi: 10.1016/j.corsci.2010.08.025
    [24] Zhang B W, Hao S J, Wu J S, et al. Direct evidence of passive film growth on 316 stainless steel in alkaline solution. Mater Charact, 2017, 131: 168 doi: 10.1016/j.matchar.2017.05.013
    [25] Hu Y L, Hu R G, Shao M H, et al. In situ ECSTEM investigation on formation and breakdown of passive film for polycrystalline stainless steel. Acta Metall Sin, 2001, 37(9): 965 doi: 10.3321/j.issn:0412-1961.2001.09.015

    胡艷玲, 胡融剛, 邵敏華, 等. 不銹鋼鈍化膜形成和破壞過程的原位ECSTM研究. 金屬學報, 2001, 37(9):965 doi: 10.3321/j.issn:0412-1961.2001.09.015
    [26] Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals. Nature Commun, 2018, 9: 2559 doi: 10.1038/s41467-018-04942-x
    [27] Ha H M, Fritzsche H. In-situ polarized neutron reflectometry study of the passive film growth on Fe-20Cr alloy. J Electrochem Soc, 2019, 166(11): C3064 doi: 10.1149/2.0081911jes
    [28] Liu Q, Ma R N, Du A, et al. Investigation on structure and corrosion resistance of complex inorganic passive film based on graphene oxide. Corros Sci, 2019, 150: 64 doi: 10.1016/j.corsci.2019.01.022
    [29] Yao J Z, Macdonald D D, Dong C F. Passive film on 2205 duplex stainless steel studied by photo-electrochemistry and ARXPS methods. Corros Sci, 2019, 146: 221 doi: 10.1016/j.corsci.2018.10.020
    [30] Yang Y Y, Liu Y Y, Cheng M L, et al. Enhancements of passive film and pitting resistance in chloride solution for 316LX austenitic stainless steel after Sn alloying. Acta Metall Sin (Engl Lett), 2019, 32(1): 98 doi: 10.1007/s40195-018-0855-9
    [31] Bard A J, Fan F R F, Kwak J, et al. Scanning electrochemical microscopy introduction and principal. Anal Chem, 1989, 61(2): 132 doi: 10.1021/ac00177a011
    [32] Zhang Q H, Ye Z N, Zhu Z J, et al. Separation and kinetic study of iron corrosion in acidic solution via a modified tip generation/substrate collection mode by SECM. Corros Sci, 2018, 139: 403 doi: 10.1016/j.corsci.2018.05.021
    [33] Filotás D, Fernández-Pérez B M, Kiss A, et al. Double barrel microelectrode assembly to prevent electrical field effects in potentiometric SECM imaging of galvanic corrosion processes. J Electrochem Soc, 2018, 165(5): C270 doi: 10.1149/2.0671805jes
    [34] Filotás D, Fernández-Pérez B M, Nagy L, et al. Potentiometric tip electrodes for improved visualization of galvanic corrosion processes using SECM // ECS Meeting Abstracts. Glasgow: The Electrochemical Society, 2019: 2268
    [35] ?rnek C, Leygraf C, Pan J S. Passive film characterisation of duplex stainless steel using scanning Kelvin probe force microscopy in combination with electrochemical measurements. NPJ Mater Degrad, 2019, 3: 8 doi: 10.1038/s41529-019-0071-8
    [36] Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros Sci, 2018, 134: 131 doi: 10.1016/j.corsci.2018.02.031
  • 加載中
圖(7)
計量
  • 文章訪問數:  1653
  • HTML全文瀏覽量:  1813
  • PDF下載量:  185
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-05-15
  • 刊出日期:  2020-05-01

目錄

    /

    返回文章
    返回