[1] |
Huo D X, Liang J L, Li H, et al. Research progress of application of electrochemical corrosion technology. Hot Work Technol, 2017, 46(10): 18霍東興, 梁精龍, 李慧, 等. 腐蝕電化學技術應用研究進展. 熱加工工藝, 2017, 46(10):18
|
[2] |
Wang Z, Tang X, Xue J P, et al. The pitting behavior of stainless steels under SO2 environments with Cl? and F? // CORROSION 2017. New Orleans, 2017: NACE-2017-9241
|
[3] |
Choi Y S, Nesic S, Ling S. Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions. Electrochim Acta, 2011, 56(4): 1752 doi: 10.1016/j.electacta.2010.08.049
|
[4] |
Wang Z, Zhang L, Tang X, et al. Investigation of the deterioration of passive films in H2S-containing solutions. Int J Miner Metall Mater, 2017, 24(8): 943 doi: 10.1007/s12613-017-1482-6
|
[5] |
Ding J H, Zhang L, Lu M X, et al. The electrochemical behaviour of 316L austenitic stainless steel in Cl? containing environment under different H2S partial pressures. Appl Surf Sci, 2014, 289: 33 doi: 10.1016/j.apsusc.2013.10.080
|
[6] |
Davoodi A, Pakshir M, Babaiee M, et al. A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media. Corros Sci, 2011, 53(1): 399 doi: 10.1016/j.corsci.2010.09.050
|
[7] |
Rhodes P R. Environment-assisted cracking of corrosion-resistant alloys in oil and gas production environments: A review. Corrosion, 2001, 57(11): 923 doi: 10.5006/1.3290320
|
[8] |
Jones S, Li Y X, Coley K S, et al. Corrosion potential oscillations of nickel-containing stainless steel in concentrated sulphuric acid: II Mechanism and kinetic modelling. Corros Sci, 2010, 52(1): 250 doi: 10.1016/j.corsci.2009.09.012
|
[9] |
Li Y X, Ives M B, Coley K S, et al. Corrosion of nickel-containing stainless steel in concentrated sulphuric acid. Corros Sci, 2004, 46(8): 1969 doi: 10.1016/j.corsci.2003.10.017
|
[10] |
Shen C, Xia D H, Fan H Q, et al. Passivation degradation of Alloy 800 in boiling solution containing thiosulphate. Electrochim Acta, 2017, 233: 13 doi: 10.1016/j.electacta.2017.03.037
|
[11] |
Abelev E, Sellberg J, Ramanarayanan T A, et al. Effect of H2S on Fe corrosion in CO2-saturated brine. J Mater Sci, 2009, 44(22): 6167 doi: 10.1007/s10853-009-3854-4
|
[12] |
Ben Salah M, Sabot R, Refait P, et al. Passivation behaviour of stainless steel (UNS N-08028) in industrial or simplified phosphoric acid solutions at different temperatures. Corros Sci, 2015, 99: 320 doi: 10.1016/j.corsci.2015.07.025
|
[13] |
Ge H H, Zhou G D, Wu W Q. Passivation model of 316 stainless steel in simulated cooling water and the effect of sulfide on the passive film. Appl Surf Sci, 2003, 211(1-4): 321 doi: 10.1016/S0169-4332(03)00355-6
|
[14] |
Duarte R G, Castela A S, Neves R, et al. Corrosion behavior of stainless steel rebars embedded in concrete: an electrochemical impedance spectroscopy study. Electrochim Acta, 2014, 124: 218 doi: 10.1016/j.electacta.2013.11.154
|
[15] |
Luo H, Dong C F, Xiao K, et al. The passive behaviour of ferritic stainless steel containing alloyed tin in acidic media. RSC Adv, 2016, 6(12): 9940 doi: 10.1039/C5RA23698C
|
[16] |
Li Y, Cheng Y F. Passive film growth on carbon steel and its nanoscale features at various passivating potentials. Appl Surf Sci, 2017, 396: 144 doi: 10.1016/j.apsusc.2016.11.046
|
[17] |
Wang Z, Zhang L, Tang X, et al. The surface characterization and passive behavior of Type 316L stainless steel in H2S-containing conditions. Appl Surf Sci, 2017, 423: 457 doi: 10.1016/j.apsusc.2017.06.214
|
[18] |
Ebrahimi N, Momeni M, Kosari A, et al. A comparative study of critical pitting temperature (CPT) of stainless steels by electrochemical impedance spectroscopy (EIS), potentiodynamic and potentiostatic techniques. Corros Sci, 2012, 59: 96 doi: 10.1016/j.corsci.2012.02.026
|
[19] |
Wang Z, Zhou Z Q, Zhang L, et al. Effect of pH on the electrochemical behaviour and passive film composition of 316L stainless steel. Acta Metall Sin (Engl Lett), 2019, 32(5): 585 doi: 10.1007/s40195-018-0794-5
|
[20] |
Wang Z, Zhang L, Zhang Z R, et al. Combined effect of pH and H2S on the structure of passive film formed on type 316L stainless steel. Appl Surf Sci, 2018, 458: 686 doi: 10.1016/j.apsusc.2018.07.122
|
[21] |
Fajardo S, Bastidas D M, Ryan M P, et al. Low-nickel stainless steel passive film in simulated concrete pore solution: A SIMS study. Appl Surf Sci, 2010, 256(21): 6139 doi: 10.1016/j.apsusc.2010.03.140
|
[22] |
Alvarez S M, Bautista A, Velasco F. Corrosion behaviour of corrugated lean duplex stainless steels in simulated concrete pore solutions. Corros Sci, 2011, 53(5): 1748 doi: 10.1016/j.corsci.2011.01.050
|
[23] |
Hamada E, Yamada K, Nagoshi M, et al. Direct imaging of native passive film on stainless steel by aberration corrected STEM. Corros Sci, 2010, 52(12): 3851 doi: 10.1016/j.corsci.2010.08.025
|
[24] |
Zhang B W, Hao S J, Wu J S, et al. Direct evidence of passive film growth on 316 stainless steel in alkaline solution. Mater Charact, 2017, 131: 168 doi: 10.1016/j.matchar.2017.05.013
|
[25] |
Hu Y L, Hu R G, Shao M H, et al. In situ ECSTEM investigation on formation and breakdown of passive film for polycrystalline stainless steel. Acta Metall Sin, 2001, 37(9): 965 doi: 10.3321/j.issn:0412-1961.2001.09.015胡艷玲, 胡融剛, 邵敏華, 等. 不銹鋼鈍化膜形成和破壞過程的原位ECSTM研究. 金屬學報, 2001, 37(9):965 doi: 10.3321/j.issn:0412-1961.2001.09.015
|
[26] |
Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals. Nature Commun, 2018, 9: 2559 doi: 10.1038/s41467-018-04942-x
|
[27] |
Ha H M, Fritzsche H. In-situ polarized neutron reflectometry study of the passive film growth on Fe-20Cr alloy. J Electrochem Soc, 2019, 166(11): C3064 doi: 10.1149/2.0081911jes
|
[28] |
Liu Q, Ma R N, Du A, et al. Investigation on structure and corrosion resistance of complex inorganic passive film based on graphene oxide. Corros Sci, 2019, 150: 64 doi: 10.1016/j.corsci.2019.01.022
|
[29] |
Yao J Z, Macdonald D D, Dong C F. Passive film on 2205 duplex stainless steel studied by photo-electrochemistry and ARXPS methods. Corros Sci, 2019, 146: 221 doi: 10.1016/j.corsci.2018.10.020
|
[30] |
Yang Y Y, Liu Y Y, Cheng M L, et al. Enhancements of passive film and pitting resistance in chloride solution for 316LX austenitic stainless steel after Sn alloying. Acta Metall Sin (Engl Lett), 2019, 32(1): 98 doi: 10.1007/s40195-018-0855-9
|
[31] |
Bard A J, Fan F R F, Kwak J, et al. Scanning electrochemical microscopy introduction and principal. Anal Chem, 1989, 61(2): 132 doi: 10.1021/ac00177a011
|
[32] |
Zhang Q H, Ye Z N, Zhu Z J, et al. Separation and kinetic study of iron corrosion in acidic solution via a modified tip generation/substrate collection mode by SECM. Corros Sci, 2018, 139: 403 doi: 10.1016/j.corsci.2018.05.021
|
[33] |
Filotás D, Fernández-Pérez B M, Kiss A, et al. Double barrel microelectrode assembly to prevent electrical field effects in potentiometric SECM imaging of galvanic corrosion processes. J Electrochem Soc, 2018, 165(5): C270 doi: 10.1149/2.0671805jes
|
[34] |
Filotás D, Fernández-Pérez B M, Nagy L, et al. Potentiometric tip electrodes for improved visualization of galvanic corrosion processes using SECM // ECS Meeting Abstracts. Glasgow: The Electrochemical Society, 2019: 2268
|
[35] |
?rnek C, Leygraf C, Pan J S. Passive film characterisation of duplex stainless steel using scanning Kelvin probe force microscopy in combination with electrochemical measurements. NPJ Mater Degrad, 2019, 3: 8 doi: 10.1038/s41529-019-0071-8
|
[36] |
Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros Sci, 2018, 134: 131 doi: 10.1016/j.corsci.2018.02.031
|