<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

楊梅狀Fe3O4@SnO2核殼材料制備及吸波性能

黃威 王玉江 魏世丞 梁義 王博 黃玉煒 徐濱士

黃威, 王玉江, 魏世丞, 梁義, 王博, 黃玉煒, 徐濱士. 楊梅狀Fe3O4@SnO2核殼材料制備及吸波性能[J]. 工程科學學報, 2020, 42(5): 635-644. doi: 10.13374/j.issn2095-9389.2019.05.05.001
引用本文: 黃威, 王玉江, 魏世丞, 梁義, 王博, 黃玉煒, 徐濱士. 楊梅狀Fe3O4@SnO2核殼材料制備及吸波性能[J]. 工程科學學報, 2020, 42(5): 635-644. doi: 10.13374/j.issn2095-9389.2019.05.05.001
HUANG Wei, WANG Yu-jiang, WEI Shi-cheng, LIANG yi, WANG bo, HUANG Yu-wei, XU Bin-shi. Fabrication and microwave absorption properties of myrica rubra-like Fe3O4@SnO2 core-shell material[J]. Chinese Journal of Engineering, 2020, 42(5): 635-644. doi: 10.13374/j.issn2095-9389.2019.05.05.001
Citation: HUANG Wei, WANG Yu-jiang, WEI Shi-cheng, LIANG yi, WANG bo, HUANG Yu-wei, XU Bin-shi. Fabrication and microwave absorption properties of myrica rubra-like Fe3O4@SnO2 core-shell material[J]. Chinese Journal of Engineering, 2020, 42(5): 635-644. doi: 10.13374/j.issn2095-9389.2019.05.05.001

楊梅狀Fe3O4@SnO2核殼材料制備及吸波性能

doi: 10.13374/j.issn2095-9389.2019.05.05.001
詳細信息
    通訊作者:

    E-mail:hitwyj@126.com

  • 中圖分類號: TB34

Fabrication and microwave absorption properties of myrica rubra-like Fe3O4@SnO2 core-shell material

More Information
  • 摘要: 以磁性Fe3O4微球為模板,通過St?ber法和水熱法合成了一種楊梅狀的新型Fe3O4@SnO2復合材料,主要應用于電磁波吸收領域。借助X射線衍射、X光電子能譜、掃描電子顯微鏡、透射電子顯微鏡、振動樣品磁強計和矢量網絡分析儀對其物相結構、表面元素、微觀形貌、磁性及吸波特性進行了分析表征。分析結果表明,楊梅狀的Fe3O4@SnO2的球徑約為500 nm,無明顯團聚,具有良好的形貌均勻性。其SnO2層由納米SnO2顆粒松散堆疊而成,具有大量的空隙結構,層厚約為40 nm。楊梅狀的Fe3O4@SnO2具有較強的介電損耗能力,且有利于提升阻抗匹配性能,呈現出良好的電磁波吸收能力,當厚度為1.4~2.8 mm時,其最小反射損耗RL(min)均低于?20 dB。其最優厚度為1.7 mm,此時RL(min)為?29 dB,有效帶寬為4.9 GHz(13.1~18 GHz),是一種具有發展潛力的吸波材料。

     

  • 圖  1  不同試樣的X射線衍射圖譜

    Figure  1.  XRD pattern of the studied samples

    圖  2  不同試樣的X射線光電子能譜。(a) 總譜;(b) Fe3O4@SnO2-1中的Fe2p譜;(c) Fe3O4@SnO2-2中的Fe2p譜;(d) Fe3O4@SnO2-2中的Sn3d譜

    Figure  2.  XPS spectra of different samples: (a) XPS wide scan; (b) Fe2p spectrum of Fe3O4@SnO2-1; (c) Fe2p spectrum of Fe3O4@SnO2-2; (d) Sn3d spectrum of Fe3O4@SnO2-2

    圖  3  試樣微觀結構形貌圖。(a) Fe3O4;(b) Fe3O4@SiO2;(c) Fe3O4@SnO2-1;(d) Fe3O4@SnO2-2

    Figure  3.  SEM and TEM images of samples: (a) Fe3O4; (b) Fe3O4@SiO2; (c) Fe3O4@SnO2-1; (d) Fe3O4@SnO2-2

    圖  4  Fe3O4@SnO2-2合成過程示意圖

    Figure  4.  Schematic illustration of the synthesis process of Fe3O4@SnO2-2

    圖  5  試樣室溫下的磁滯回線

    Figure  5.  Hysteresis loops of samples measured at room temperature

    圖  6  試樣復介電常數和復磁導率在2~18 GHz隨頻率變化曲線。(a) 復介電常數實部;(b) 復介電常數虛部;(c) 復磁導率實部;(d) 復磁導率虛部

    Figure  6.  Frequency-dependent complex permittivity and complex permeability of samples: (a) real parts of complex permittivity; (b) imaginary parts of complex permittivity; (c) real parts of complex permeability; (d) imaginary parts of complex permeability

    圖  7  試樣的反射損耗圖。(a) Fe3O4;(b) Fe3O4@SiO2;(c) Fe3O4@SnO2-1;(d) Fe3O4@SnO2-2

    Figure  7.  Reflection loss maps of samples: (a) Fe3O4; (b) Fe3O4@SiO2; (c) Fe3O4@SnO2-1; (d) Fe3O4@SnO2-2

    圖  8  試樣的介電損耗正切值(a)和磁損耗正切值(b)

    Figure  8.  Dielectric loss tangents (tanδE) (a) and magnetic loss tangents (tanδM) (b) of samples

    圖  9  研究試樣的阻抗匹配圖。(a) Fe3O4;(b) Fe3O4@SiO2;(c) Fe3O4@SnO2-1;(d) Fe3O4@SnO2-2

    Figure  9.  Impedance matching maps of studied samples: (a) Fe3O4; (b) Fe3O4@SiO2; (c) Fe3O4@SnO2-1; (d) Fe3O4@SnO2-2

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Huang Y W, Wang Y J, Wei S C, et al. Effect of Co-doping on the microstructure and microwave absorbing properties of RGO/Fe3O4 composites. Chin J Eng, 2018, 40(7): 849

    黃玉煒, 王玉江, 魏世丞, 等. Co摻雜對RGO/Fe3O4復合材料組織結構和吸波性能的影響. 工程科學學報, 2018, 40(7):849
    [2] Zheng J, Yu Z X, Ji G B, et al. Reduction synthesis of FexOy@SiO2 core-shell nanostructure with enhanced microwave-absorption properties. J Alloys Compd, 2014, 602: 8 doi: 10.1016/j.jallcom.2014.03.002
    [3] Zhou C, Geng S, Xu X W, et al. Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in micro absorption. Carbon, 2016, 108: 234 doi: 10.1016/j.carbon.2016.07.015
    [4] Zhao B, Shao G, Fan B B, et al. Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. Phys Chem Chem Phys, 2015, 17(14): 8802 doi: 10.1039/C4CP05632A
    [5] Liu Y, Cui T T, Wu T, et al. Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach. Nanotechnology, 2016, 27(16): 165707 doi: 10.1088/0957-4484/27/16/165707
    [6] Hu C G, Mo Z Y, Lu G W, et al. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys, 2013, 15(31): 13038 doi: 10.1039/c3cp51253c
    [7] Feng H T, Zhuo R F, Chen J T, et al. Synthesis, characterization, and microwave absorption property of the SnO2 nanowire/paraffin composites. Nanoscale Res Lett, 2009, 4(12): 1452 doi: 10.1007/s11671-009-9419-2
    [8] Lian P C, Zhu X F, Liang S Z, et al. High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta, 2011, 56(12): 4532 doi: 10.1016/j.electacta.2011.01.126
    [9] Wang Y, Dai X Q, Jiang W C, et al. The hybrid of SnO2 nanoparticle and polypyrrole aerogel: An excellent electromagnetic wave absorbing materials. Mater Res Exp, 2016, 3(7): 075023 doi: 10.1088/2053-1591/3/7/075023
    [10] Zhao B, Guo X Q, Zhao W Y, et al. Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl Mater Interfaces, 2016, 8(42): 28917 doi: 10.1021/acsami.6b10886
    [11] Huang W, Wei S C, Liang Y, et al. Research progress of core-shell composite absorbing materials. Chin J Eng, 2019, 41(5): 547

    黃威, 魏世丞, 梁義, 等. 核殼結構復合吸波材料研究進展. 工程科學學報, 2019, 41(5):547
    [12] Liu J W, Che R C, Chen H J, et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small, 2012, 8(8): 1214 doi: 10.1002/smll.201102245
    [13] Li R Z, Ren X, Zhang F, et al. Synthesis of Fe3O4@SnO2 core-shell nanorod film and its application as a thin-film supercapacitor electrode. Chem Commun, 2012, 48(41): 5010 doi: 10.1039/c2cc31786a
    [14] Li J, Chen Y, Wu Q S, et al. Synthesis of sea-urchin-like Fe3O4/SnO2 heterostructures and its application for environmental remediation by removal of p-chlorophenol. J Mater Sci, 2019, 54(2): 1341 doi: 10.1007/s10853-018-2899-7
    [15] Feng J T, Hou Y H, Wang Y C, et al. Synthesis of hierarchical ZnFe2O4@SiO2@RGO core-shell microspheres for enhanced electromagnetic wave absorption. ACS Appl Mater Interfaces, 2017, 9(16): 14103 doi: 10.1021/acsami.7b03330
    [16] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci, 2008, 254(8): 2441 doi: 10.1016/j.apsusc.2007.09.063
    [17] Du H Y, Yao P J, Wang J, et al. Preparation and gas sensing property of SnO2/ZnO composite hetero-nanofibers using two-step method. J Inorg Mater, 2018, 33(4): 453 doi: 10.15541/jim20170218

    杜海英, 姚朋軍, 王兢, 等. 異質復合結構納米纖維SnO2/ZnO的制備及其氣敏特性研究. 無機材料學報, 2018, 33(4):453 doi: 10.15541/jim20170218
    [18] Ashok A, Vijayaraghavan S N, Unni G E, et al. On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar cells. Nanotechnology, 2018, 29(17): 175401 doi: 10.1088/1361-6528/aaae45
    [19] Li Z W, Yang Z H. Microwave absorption properties and mechanism for hollow Fe3O4 nanosphere composites. J Magn Magn Mater, 2015, 387: 131 doi: 10.1016/j.jmmm.2015.03.087
    [20] Lou X W, Yuan C, Archer L A. Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv Mater, 2007, 19(20): 3328 doi: 10.1002/adma.200700357
    [21] Du Y C, Liu W W, Qiang R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces, 2014, 6(15): 12997 doi: 10.1021/am502910d
    [22] Tian C H, Du Y C, Cui C S, et al. Synthesis and microwave absorption enhancement of yolk-shell Fe3O4@C microspheres. J Mater Sci, 2017, 52(11): 6349 doi: 10.1007/s10853-017-0866-3
    [23] Park M J, Kim S S. Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra. Electron Mater Lett, 2016, 12(5): 610 doi: 10.1007/s13391-016-6061-x
    [24] Alam R S, Moradi M, Nikmanesh H. Influence of multi-walled carbon nanotubes (MWCNTs) volume percentage on the magnetic and microwave absorbing properties of BaMg0.5Co0.5TiFe10O19/MWCNTs nanocomposites. Mater Res Bull, 2016, 73: 261 doi: 10.1016/j.materresbull.2015.09.016
    [25] Xie J L, Liang B L, Deng L J. Electromagnetic parameters analysis of SiO2 coat flaky metal magnetic powder. J Funct Mater, 2008, 39(1): 41 doi: 10.3321/j.issn:1001-9731.2008.01.013

    謝建良, 梁波浪, 鄧龍江. 二氧化硅包覆片狀金屬磁性微粉電磁特性分析. 功能材料, 2008, 39(1):41 doi: 10.3321/j.issn:1001-9731.2008.01.013
    [26] Sui M X, Sun X D, Lou H F, et al. Synthesis of hollow Fe3O4 particles via one-step solvothermal approach for microwave absorption materials: effect of reactant concentration, reaction temperature and reaction time. J Mater Sci Mater Electron, 2018, 29(9): 7539 doi: 10.1007/s10854-018-8746-4
    [27] Hornyak G L, Patrissi C J, Martin C R. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit. J Phys Chem B, 1997, 101(9): 1548 doi: 10.1021/jp962685o
    [28] Meng F B, Wang H G, Huang F, et al. Graphene-based microwave absorbing composites: a review and prospective. Compos Part B Eng, 2018, 137: 260 doi: 10.1016/j.compositesb.2017.11.023
    [29] Wang T, Zhang J M, Wang P, et al. The absorption mechanism of radar absorber and performance evaluation criterion of absorbent. J Magn Mater Device, 2016, 47(6): 7 doi: 10.3969/j.issn.1001-3830.2016.06.002

    王濤, 張峻銘, 王鵬, 等. 吸波材料吸波機制及吸波劑性能優劣評價方法. 磁性材料及器件, 2016, 47(6):7 doi: 10.3969/j.issn.1001-3830.2016.06.002
  • 加載中
圖(9)
計量
  • 文章訪問數:  2408
  • HTML全文瀏覽量:  1341
  • PDF下載量:  44
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-05-05
  • 刊出日期:  2020-05-01

目錄

    /

    返回文章
    返回