Fabrication and microwave absorption properties of myrica rubra-like Fe3O4@SnO2 core-shell material
-
摘要: 以磁性Fe3O4微球為模板,通過St?ber法和水熱法合成了一種楊梅狀的新型Fe3O4@SnO2復合材料,主要應用于電磁波吸收領域。借助X射線衍射、X光電子能譜、掃描電子顯微鏡、透射電子顯微鏡、振動樣品磁強計和矢量網絡分析儀對其物相結構、表面元素、微觀形貌、磁性及吸波特性進行了分析表征。分析結果表明,楊梅狀的Fe3O4@SnO2的球徑約為500 nm,無明顯團聚,具有良好的形貌均勻性。其SnO2層由納米SnO2顆粒松散堆疊而成,具有大量的空隙結構,層厚約為40 nm。楊梅狀的Fe3O4@SnO2具有較強的介電損耗能力,且有利于提升阻抗匹配性能,呈現出良好的電磁波吸收能力,當厚度為1.4~2.8 mm時,其最小反射損耗RL(min)均低于?20 dB。其最優厚度為1.7 mm,此時RL(min)為?29 dB,有效帶寬為4.9 GHz(13.1~18 GHz),是一種具有發展潛力的吸波材料。
-
關鍵詞:
- Fe3O4@SnO2 /
- 核殼 /
- 復合物 /
- 楊梅狀 /
- 微波吸收
Abstract: Against the background of the widespread application of various electronic devices and communication technologies, there is great concern regarding the problem of excessive radiation of electromagnetic waves with regard to electromagnetic interference, environmental pollution, and human health. Microwave-absorbing materials (MAMs) can transform electromagnetic energy into heat or dissipate electromagnetic waves via interference. Numerous theoretical and experimental studies have focused on the prevention of electromagnetic pollution and other related problems. Magnetite (Fe3O4) is considered one of the most promising MAMs because of its excellent properties, such as high saturation magnetization, high Curie temperature, and low cost. However, the single Fe3O4 has the disadvantages of weak dielectric loss and easy oxidation, thereby limiting its application in the field of microwave absorption. Fabrication of Fe3O4-based nanocomposites is an effective solution for these problems. In this study, a new type of Fe3O4@SnO2 composite similar to myrica rubra (Chinese bayberry) was synthesized by the St?ber method and hydrothermal method using magnetic Fe3O4 microspheres as template. The phase structure, surface elements, micromorphology, magnetic properties, and microwave absorption properties of the samples were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy and by observations based on a vibrating-sample magnetometer and vector network analyzer. The results show that the diameter of the myrica rubra-like Fe3O4@SnO2 sphere is about 500 nm, without obvious agglomeration, and that it has good morphological uniformity. The SnO2 layer is composed of nano-SnO2 particles, which are loosely stacked. The layer possesses many porous structures and is about 40 nm thick. The myrica rubra-like Fe3O4@SnO2 has strong dielectric loss capacity, is conducive to improving impedance matching performance, and exhibits good electromagnetic wave absorption capacity. When the thickness is 1.4–2.8 mm, RL(min) exceeds ?20 dB. The optimum thickness is 1.7 mm, RL(min) is ?29 dB, and the effective bandwidth is 4.9 GHz (13.1–18 GHz). It is a potential-absorbing material.-
Key words:
- Fe3O4@SnO2 /
- core-shell /
- composites /
- myrica rubra-like /
- microwave absorption
-
圖 6 試樣復介電常數和復磁導率在2~18 GHz隨頻率變化曲線。(a) 復介電常數實部;(b) 復介電常數虛部;(c) 復磁導率實部;(d) 復磁導率虛部
Figure 6. Frequency-dependent complex permittivity and complex permeability of samples: (a) real parts of complex permittivity; (b) imaginary parts of complex permittivity; (c) real parts of complex permeability; (d) imaginary parts of complex permeability
259luxu-164 -
參考文獻
[1] Huang Y W, Wang Y J, Wei S C, et al. Effect of Co-doping on the microstructure and microwave absorbing properties of RGO/Fe3O4 composites. Chin J Eng, 2018, 40(7): 849黃玉煒, 王玉江, 魏世丞, 等. Co摻雜對RGO/Fe3O4復合材料組織結構和吸波性能的影響. 工程科學學報, 2018, 40(7):849 [2] Zheng J, Yu Z X, Ji G B, et al. Reduction synthesis of FexOy@SiO2 core-shell nanostructure with enhanced microwave-absorption properties. J Alloys Compd, 2014, 602: 8 doi: 10.1016/j.jallcom.2014.03.002 [3] Zhou C, Geng S, Xu X W, et al. Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in micro absorption. Carbon, 2016, 108: 234 doi: 10.1016/j.carbon.2016.07.015 [4] Zhao B, Shao G, Fan B B, et al. Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. Phys Chem Chem Phys, 2015, 17(14): 8802 doi: 10.1039/C4CP05632A [5] Liu Y, Cui T T, Wu T, et al. Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach. Nanotechnology, 2016, 27(16): 165707 doi: 10.1088/0957-4484/27/16/165707 [6] Hu C G, Mo Z Y, Lu G W, et al. 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys, 2013, 15(31): 13038 doi: 10.1039/c3cp51253c [7] Feng H T, Zhuo R F, Chen J T, et al. Synthesis, characterization, and microwave absorption property of the SnO2 nanowire/paraffin composites. Nanoscale Res Lett, 2009, 4(12): 1452 doi: 10.1007/s11671-009-9419-2 [8] Lian P C, Zhu X F, Liang S Z, et al. High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta, 2011, 56(12): 4532 doi: 10.1016/j.electacta.2011.01.126 [9] Wang Y, Dai X Q, Jiang W C, et al. The hybrid of SnO2 nanoparticle and polypyrrole aerogel: An excellent electromagnetic wave absorbing materials. Mater Res Exp, 2016, 3(7): 075023 doi: 10.1088/2053-1591/3/7/075023 [10] Zhao B, Guo X Q, Zhao W Y, et al. Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl Mater Interfaces, 2016, 8(42): 28917 doi: 10.1021/acsami.6b10886 [11] Huang W, Wei S C, Liang Y, et al. Research progress of core-shell composite absorbing materials. Chin J Eng, 2019, 41(5): 547黃威, 魏世丞, 梁義, 等. 核殼結構復合吸波材料研究進展. 工程科學學報, 2019, 41(5):547 [12] Liu J W, Che R C, Chen H J, et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small, 2012, 8(8): 1214 doi: 10.1002/smll.201102245 [13] Li R Z, Ren X, Zhang F, et al. Synthesis of Fe3O4@SnO2 core-shell nanorod film and its application as a thin-film supercapacitor electrode. Chem Commun, 2012, 48(41): 5010 doi: 10.1039/c2cc31786a [14] Li J, Chen Y, Wu Q S, et al. Synthesis of sea-urchin-like Fe3O4/SnO2 heterostructures and its application for environmental remediation by removal of p-chlorophenol. J Mater Sci, 2019, 54(2): 1341 doi: 10.1007/s10853-018-2899-7 [15] Feng J T, Hou Y H, Wang Y C, et al. Synthesis of hierarchical ZnFe2O4@SiO2@RGO core-shell microspheres for enhanced electromagnetic wave absorption. ACS Appl Mater Interfaces, 2017, 9(16): 14103 doi: 10.1021/acsami.7b03330 [16] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci, 2008, 254(8): 2441 doi: 10.1016/j.apsusc.2007.09.063 [17] Du H Y, Yao P J, Wang J, et al. Preparation and gas sensing property of SnO2/ZnO composite hetero-nanofibers using two-step method. J Inorg Mater, 2018, 33(4): 453 doi: 10.15541/jim20170218杜海英, 姚朋軍, 王兢, 等. 異質復合結構納米纖維SnO2/ZnO的制備及其氣敏特性研究. 無機材料學報, 2018, 33(4):453 doi: 10.15541/jim20170218 [18] Ashok A, Vijayaraghavan S N, Unni G E, et al. On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar cells. Nanotechnology, 2018, 29(17): 175401 doi: 10.1088/1361-6528/aaae45 [19] Li Z W, Yang Z H. Microwave absorption properties and mechanism for hollow Fe3O4 nanosphere composites. J Magn Magn Mater, 2015, 387: 131 doi: 10.1016/j.jmmm.2015.03.087 [20] Lou X W, Yuan C, Archer L A. Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv Mater, 2007, 19(20): 3328 doi: 10.1002/adma.200700357 [21] Du Y C, Liu W W, Qiang R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces, 2014, 6(15): 12997 doi: 10.1021/am502910d [22] Tian C H, Du Y C, Cui C S, et al. Synthesis and microwave absorption enhancement of yolk-shell Fe3O4@C microspheres. J Mater Sci, 2017, 52(11): 6349 doi: 10.1007/s10853-017-0866-3 [23] Park M J, Kim S S. Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra. Electron Mater Lett, 2016, 12(5): 610 doi: 10.1007/s13391-016-6061-x [24] Alam R S, Moradi M, Nikmanesh H. Influence of multi-walled carbon nanotubes (MWCNTs) volume percentage on the magnetic and microwave absorbing properties of BaMg0.5Co0.5TiFe10O19/MWCNTs nanocomposites. Mater Res Bull, 2016, 73: 261 doi: 10.1016/j.materresbull.2015.09.016 [25] Xie J L, Liang B L, Deng L J. Electromagnetic parameters analysis of SiO2 coat flaky metal magnetic powder. J Funct Mater, 2008, 39(1): 41 doi: 10.3321/j.issn:1001-9731.2008.01.013謝建良, 梁波浪, 鄧龍江. 二氧化硅包覆片狀金屬磁性微粉電磁特性分析. 功能材料, 2008, 39(1):41 doi: 10.3321/j.issn:1001-9731.2008.01.013 [26] Sui M X, Sun X D, Lou H F, et al. Synthesis of hollow Fe3O4 particles via one-step solvothermal approach for microwave absorption materials: effect of reactant concentration, reaction temperature and reaction time. J Mater Sci Mater Electron, 2018, 29(9): 7539 doi: 10.1007/s10854-018-8746-4 [27] Hornyak G L, Patrissi C J, Martin C R. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit. J Phys Chem B, 1997, 101(9): 1548 doi: 10.1021/jp962685o [28] Meng F B, Wang H G, Huang F, et al. Graphene-based microwave absorbing composites: a review and prospective. Compos Part B Eng, 2018, 137: 260 doi: 10.1016/j.compositesb.2017.11.023 [29] Wang T, Zhang J M, Wang P, et al. The absorption mechanism of radar absorber and performance evaluation criterion of absorbent. J Magn Mater Device, 2016, 47(6): 7 doi: 10.3969/j.issn.1001-3830.2016.06.002王濤, 張峻銘, 王鵬, 等. 吸波材料吸波機制及吸波劑性能優劣評價方法. 磁性材料及器件, 2016, 47(6):7 doi: 10.3969/j.issn.1001-3830.2016.06.002 -