Parameter optimization and performance evaluation of elliptical spiral mini-tube bundle reactor
-
摘要: 為提高儲氫反應器的傳熱及吸放氫速率, 對現有金屬氫化物反應器進行了系統的綜合分析與評價.基于強化傳熱傳質特性, 設計優化出了一種高效的新型橢圓螺旋微管束反應器(ESMBR), 其具有結構緊湊、傳熱效果好、反應速度快及操作方便等特點.對研究的儲氫反應器進行了建模, 并通過實驗驗證了該模型的準確性和有效性.通過COMSOL軟件對比ESMBR、圓形螺旋微管束反應器(SMBR)和直管微管束反應器(MTBR)的數值模擬結果得出, ESMBR在儲氫時具有優異的傳熱傳質性能.進一步的敏感性分析結果表明, ESMBR中橢圓螺旋管結構參數的敏感性順序為主直徑(Dc) >橢圓截面長軸(A) >橢圓截面短軸(B) >節距(Pt) >螺旋角度(α).采用多元價值取向模型對不同的反應器方案進行了系統的分析評估, 結果表明: ESMBR的綜合優度高達0.845, 對比結果也明顯優于其他反應器, 在氫能領域將有廣闊的應用前景.Abstract: Storage and transportation are one of the primary restrictions on the approach involving hydrogen energy. The traditional hydrogen storage methods, including high-pressure gas cylinder and cryogenic liquid tank show unfavorable economy, thus hindering their further industrial application and development. Metal hydrides can reversibly react with hydrogen and accomplish the hydriding/dehydriding process under mild operation conditions, which feature advantages such as large hydrogen storage amount, low operation pressure and energy consumption. This process is expected to replace the conventional hydrogen storage and transportation. Meanwhile, considering the strong endothermal/exothermic effect during hydrogenation/dehydrogenation, the prompt heat removal/support inside the metal hydride reactor is a key parameter for H2 absorption/desorption rate and H2 storage efficiency. To improve the heat transfer and absorption/desorption rates of metal hydride reactor, comprehensive analysis and evaluation were conducted. Based on the heat and mass transfer intensification, a new elliptical spiral mini-tube bundle reactor (ESMBR) with high efficiency was designed and proposed; the reactor possesses numerous features, such as high heat transfer speed, compact structure, high reaction rate, and convenient operation. All the hydrogen storage reactor models were established, and both the model accuracy and effectiveness were experimentally validated. Numerical simulations of ESMBR, spiral mini-tube bundle reactor, and mini-tube bundle reactor were calculated and compared by COMSOL. ESMBR was proven to exhibit favorable heat and mass transfer performance during the H2 storage. Results of further analysis indicate that the sensitivity order of elliptical spiral structure parameters as follows: Dc > A > B > Pt > α. A multi-element valued model was used to evaluate the reactor schemes systematically, and the calculation results show the integrated superiority of ESMBR could achieve a value of 0.845. The comparison results indicate that the ESMBR presents an outstanding performance compared with other reactors and features a broad application prospect in the field of hydrogen energy.
-
Key words:
- metal hydride /
- mini-tube bundle /
- reactor /
- hydrogen storage /
- multi-element value model
-
圖 9 橢圓螺旋管結構參數敏感性分析. (a) 吸氫過程1000 s時床層平均溫度; (b) 吸氫過程反應分率從0.1~0.9所需時間
Figure 9. Sensitivity analysis of elliptical spiral tube structure parameters: (a) the average temperature of the bed during the hydrogen absorption process at 1000 s; (b) time required for reaction fraction from 0.1 to 0.9 during hydrogen absorption process
表 1 橢圓螺旋管結構參數值變化率
Table 1. Change rate of elliptical spiral tube structure parameter values
編號 參數值變化率/% Dc Pt A B α 實驗A -40 40 -40 -40 -40 實驗B -20 20 -20 -20 -20 實驗C 0 0 0 0 0 實驗D 20 -20 20 20 20 實驗E 40 -40 40 40 40 表 2 橢圓螺旋管參數值變化率為實驗D時換熱面積的變化率
Table 2. Change rate of the heat transfer area with test D
參數 參數值變化率/% 換熱面積變化率/% Dc 20 19.35 Pt -20 24.21 A 20 15.56 B 20 4.44 α 20 0 表 3 ESMBR的尺寸
Table 3. Size of ESMBR
外殼長度/mm 外殼直徑/mm 氫管直徑/mm 換熱管數 換熱管尺寸/mm α/(°) Pt Dc A B 150 50 6 4 6 5 2 1 90 表 4 六種反應器的因素指標對比
Table 4. Comparison of the indicators of six reactors
方案 p1 p2 p3 p4 p5 p6 G1 390.0 262.5 18.259 1.320 11.057 0.5 G2 340.0 312.0 8.420 1.286 9.624 0.6 G3 227.0 285.7 0.343 1.215 30.921 0.8 G4 290.0 302.0 142.977 1.385 9.945 0.4 G5 295.9 302.6 178.990 1.425 7.973 0.35 G6 301.9 303.2 184.532 1.455 6.656 0.3 表 5 因素指標重要程度的判斷值
Table 5. Judgment value of importance degree of factor index
因素pi與pj相比重要程度等級 fpi(pj) fpj(pi) 同等重要 1 1 稍微重要 1 3 明顯重要 1 5 強烈重要 1 7 表 6 綜合優度計算結果
Table 6. Comprehensive calculation results
方案 反應器類型 Zj 結果 G1 TR 0.704 Z6>Z5>Z4>Z3>Z1>Z2 G2 DR 0.700 G3 AR 0.755 G4 MTBR 0.799 G5 SMBR 0.831 G6 ESMBR 0.845 259luxu-164 -
參考文獻
[1] Wei H J, Li S M, Hou M M, et al. Ru-Ni foam catalyst for hydrogen generation from hydrolysis of sodium borohydride. J Univ Sci Technol Beijing, 2010, 32(1): 96 doi: 10.3969/j.issn.1008-2689.2010.01.019魏浩杰, 李山梅, 侯淼淼, 等. NaBH4水解制氫泡沫鎳載釕催化劑. 北京科技大學學報, 2010, 32(1): 96 doi: 10.3969/j.issn.1008-2689.2010.01.019 [2] Patil S D, Gopal M R. Analysis of a metal hydride reactor for hydrogen storage. Int J Hydrogen Energy, 2013, 38(2): 942 doi: 10.1016/j.ijhydene.2012.10.031 [3] Li P, Wang T, Fan L Z, et al. Preparation and performance of Mg-4%Ni-1%NiO hydrogen storage materials by cryomilling. J Univ Sci Technol Beijing, 2011, 33(7): 846 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201107013.htm李平, 王騰, 范麗珍, 等. 低溫球磨制備Mg-4%Ni-1%NiO儲氫材料及其性能. 北京科技大學學報, 2011, 33(7): 846 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201107013.htm [4] Anevi G, Jansson L, Lewis D. Dynamics of hydride heat pumps. J Less Common Met, 1984, 104(2): 341 doi: 10.1016/0022-5088(84)90418-1 [5] Zhang J W, Tian X H, Kuang C J. Mass transfer chemical reactions in tube-in-tube microchannel reactor. J Chem Eng Chin Univ, 2013, 27(6): 952 https://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201306006.htm張建文, 田小花, 況春江. 套管式微通道反應器內傳遞-反應性能研究. 高校化學工程學報, 2013, 27(6): 952 https://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201306006.htm [6] Bao Z W, Wu Z, Nyamsi S N, et al. Three-dimensional modeling and sensitivity analysis of multi-tubular metal hydride reactors. Appl Therm Eng, 2013, 52(1): 97 doi: 10.1016/j.applthermaleng.2012.11.023 [7] Meng X Y, Wu Z, Bao Z W, et al. Performance simulation and experimental confirmation of a mini-channel metal hydrides reactor. Int J Hydrogen Energy, 2013, 38(35): 15242 doi: 10.1016/j.ijhydene.2013.09.056 [8] Ma J C, Wang Y Q, Shi S F, et al. Optimization of heat transfer device and analysis of heat & mass transfer on the finned multi-tubular metal hydride tank. Int J Hydrogen Energy, 2014, 39(25): 13583 doi: 10.1016/j.ijhydene.2014.03.016 [9] Li W, Wang Q, Yang X J, et al. Manufacturing process of spiral-tube heat exchanger with small diameter and large length. Pressure Vessel Technol, 2018, 35(1): 67 doi: 10.3969/j.issn.1001-4837.2018.01.011李偉, 王強, 楊笑瑾, 等. 小直徑大長度螺旋管換熱器制造工藝. 壓力容器, 2018, 35(1): 67 doi: 10.3969/j.issn.1001-4837.2018.01.011 [10] Zhao X D. Spiral plate-shell heat exchanger: China Patent, CN201611017725.7.2017-05-31趙曉東. 螺旋板殼式換熱器: 中國專利, CN201611017725.7.2017-05-31 [11] Wang Y Q, Ma J C, Yang F S, et al. An Elliptical Spiral Microchannel Gas-Solid Phase Reactor: China Patent, CN201310189618.2.2013-08-14王玉琪, 馬進成, 楊福勝, 等. 一種橢圓螺旋管式微通道氣-固相反應器: 中國專利, CN201310189618.2.2018-08-14 [12] Li H D, Wang Y Q, He C, et al. Design and performance simulation of the spiral mini-channel reactor during H2 absorption. Int J Hydrogen Energy, 2015, 40(39): 13490 doi: 10.1016/j.ijhydene.2015.08.066 [13] Wu Z, Yang F S, Zhu L Y, et al. Improvement in hydrogen desorption performances of magnesium based metal hydride reactor by incorporating helical coil heat exchanger. Int J Hydrogen Energy, 2016, 41(36): 16108 doi: 10.1016/j.ijhydene.2016.04.224 [14] Singh A, Maiya M P, Murthy S S. Performance of a solid state hydrogen storage device with finned tube heat exchanger. Int J Hydrogen Energy, 2017, 42(43): 26855 doi: 10.1016/j.ijhydene.2017.06.071 [15] Ma J C, Yang F S, Wang Y Q, et al. Study on heat and mass transfer symmetry characteristic of metal hydride thermal compressor during absorption/desorption process. J Xi'an Jiaotong Univ, 2013, 47(9): 119 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201309020.htm馬進成, 楊福勝, 王玉琪, 等. 金屬氫化物熱壓縮機吸放氫傳熱傳質的對稱性研究. 西安交通大學學報, 2013, 47(9): 119 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201309020.htm [16] Chippar P, Lewis S D, Rai S, et al. Numerical investigation of hydrogen absorption in a stackable metal hydride reactor utilizing compartmentalization. Int J Hydrogen Energy, 2018, 43(16): 8007 doi: 10.1016/j.ijhydene.2018.03.017 [17] Wu Z, Yang F S, Zhang Z X, et al. Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design. Appl Energy, 2014, 130: 712 doi: 10.1016/j.apenergy.2013.12.071 [18] Bao Z W, Li L, Yuan S Y. Numerical analysis and optimization of metal hydride reactors incorporating helical coils during adsorption. J Sichuan Univ Eng Sci Ed, 2015, 47(5): 185 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201505027.htm鮑澤威, 劉亮, 袁晟毅. 內螺旋管金屬氫化物反應器吸氫過程數值分析及優化. 四川大學學報(工程科學版), 2015, 47(5): 185 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201505027.htm [19] Cao J, Jin B S, Zhong W Q, et al. Numerical simulation of the particle flow characteristic in cross-flow moving bed with internals. J Mech Eng, 2013, 49(10): 144 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201310022.htm曹俊, 金保昇, 鐘文琪, 等. 帶有內構件錯流移動床顆粒流動特性的數值模擬. 機械工程學報, 2013, 49(10): 144 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201310022.htm [20] Cho C J. The economic-energy-environmental policy problem: an application of the interactive multiobjective decision method for Chungbuk province. J Environ Manage, 1995, 56: 119 http://www.sciencedirect.com/science/article/pii/S0301479799902645 [21] Wang Y Q, Yang F S, Zhang Z X, et al. Design and process simulation of metal hydride reactors. J Xi'an Jiaotong Univ, 2006, 40(7): 831 doi: 10.3321/j.issn:0253-987X.2006.07.021王玉琪, 楊福勝, 張早校, 等. 金屬氫化物反應器的設計與過程模擬. 西安交通大學學報, 2006, 40(7): 831 doi: 10.3321/j.issn:0253-987X.2006.07.021 [22] Wang Y L. Systems Engineering Theory, Methodology and Applications. Beijing: Higher Education Press, 1998汪應洛. 系統工程理論、方法與應用. 北京: 高等教育出版社, 1998 [23] Yang L K. Chemical Reactor. 3rd Ed. Beijing: Chemical Industry Press, 2012楊雷庫. 化學反應器. 3版. 北京: 化學工業出版社, 2012 -