<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于預瞄距離的地下礦用鉸接車路徑跟蹤預測控制

孟宇 甘鑫 白國星

孟宇, 甘鑫, 白國星. 基于預瞄距離的地下礦用鉸接車路徑跟蹤預測控制[J]. 工程科學學報, 2019, 41(5): 662-671. doi: 10.13374/j.issn2095-9389.2019.05.013
引用本文: 孟宇, 甘鑫, 白國星. 基于預瞄距離的地下礦用鉸接車路徑跟蹤預測控制[J]. 工程科學學報, 2019, 41(5): 662-671. doi: 10.13374/j.issn2095-9389.2019.05.013
MENG Yu, GAN Xin, BAI Guo-xing. Path following control of underground mining articulated vehicle based on the preview control method[J]. Chinese Journal of Engineering, 2019, 41(5): 662-671. doi: 10.13374/j.issn2095-9389.2019.05.013
Citation: MENG Yu, GAN Xin, BAI Guo-xing. Path following control of underground mining articulated vehicle based on the preview control method[J]. Chinese Journal of Engineering, 2019, 41(5): 662-671. doi: 10.13374/j.issn2095-9389.2019.05.013

基于預瞄距離的地下礦用鉸接車路徑跟蹤預測控制

doi: 10.13374/j.issn2095-9389.2019.05.013
基金項目: 

國家重點研發計劃課題資助項目 2018YFC0604403

國家重點研發計劃課題資助項目 2016YFC0802905

中央高校基本科研業務資助項目 FRF-TP-17-010A2

國家高技術研究發展計劃(863計劃)資助項目 2011AA060408

詳細信息
    通訊作者:

    孟宇, E-mail: myu@ustb.edu.cn

  • 中圖分類號: TP273.1

Path following control of underground mining articulated vehicle based on the preview control method

More Information
  • 摘要: 礦用車輛無人駕駛是實現礦山無人化開采的關鍵技術, 而路徑跟蹤控制是無人駕駛系統的核心技術之一.路徑跟蹤控制系統是多變量、多約束系統, 采用傳統方法在多約束條件下存在執行器飽和等問題.針對上述問題, 本文引入模型預測控制方法, 通過考慮車輛的姿態與位置之間的關系, 以跟蹤路徑的橫向偏差最小化和車輛的航向角偏差最小化為目標對預測控制的目標函數進行優化, 以獲得車輛速度和鉸接角度的最優控制量, 實現對多變量、多約束系統的求解.針對模型預測控制算法不能提前判斷道路曲率突變而導致跟蹤超調的問題, 提出基于預瞄距離的控制方法, 通過提前判斷道路突變信息, 提高車輛路徑跟蹤精確性和穩定性.使用Matlab/Adams仿真軟件進行對比仿真試驗, 結果表明: 使用模型預測跟蹤控制器能夠解決多變量、多約束系統控制問題, 有效防止執行器飽和; 而使用基于預瞄距離的模型預測跟蹤控制器能夠使車輛的橫向位置偏差保持在±0.04 m, 航向角偏差保持在±1.8°范圍內, 相較于改進前的控制器, 其橫向位置偏差減少了80.9%, 航向角偏差減少了59.1%, 證明改進后的控制器具有更好的橫向穩定性和精確性.

     

  • 圖  1  鉸接車轉向模型

    Figure  1.  Articulated vehicle model

    圖  2  MPC路徑跟蹤控制原理圖

    Figure  2.  Schematic of vehicle path tracking control of MPC

    圖  3  MPC控制器路徑跟蹤流程簡圖

    Figure  3.  Block diagram of MPC path following the controller

    圖  4  路徑超調示意圖

    Figure  4.  Path overshoot diagram

    圖  5  基于預瞄距離的MPC控制器路徑跟蹤控制流程圖

    Figure  5.  Block diagram of MPC path following control based on preview distance

    圖  6  聯合仿真示意圖

    Figure  6.  Block diagram of unity simulation scheme

    圖  7  基于Adams的35 t鉸接式車輛模型

    Figure  7.  35 t articulated vehicle model based on Adams

    圖  8  誤差參數示意圖

    Figure  8.  Definition of error parameters

    圖  9  “S”型曲線

    Figure  9.  Definition of "S" path

    圖  10  純MPC控制器與基于預瞄距離MPC控制器對曲率半徑20 m路徑跟蹤效果對比

    Figure  10.  Comparison of tracking results based on a radius path of curvature of 20 m between the pure MPC controller and the preview distance-based MPC controller

    圖  11  車輛速度變化曲線

    Figure  11.  Curves of vehicle running speed

    圖  12  車輛鉸接角速度變化曲線

    Figure  12.  Curves of vehicle articulated angular velocity

    圖  13  車輛鉸接角度變化曲線

    Figure  13.  Curves of vehicle articulation angle

    圖  14  車輛路徑跟蹤的橫向位置偏差

    Figure  14.  Lateral positional deviation of vehicle path tracking

    圖  15  車輛路徑跟蹤的航向角偏差

    Figure  15.  Heading angle deviation of vehicle path tracking

    圖  16  純MPC控制器與基于預瞄距離MPC控制器對曲率半徑10 m路徑跟蹤效果對比

    Figure  16.  Comparison of tracking results based on a radius path of curvature of 10 m between the pure-MPC controller and the preview distance MPC controller

    圖  17  車輛速度變化曲線

    Figure  17.  Curve of vehicle running speed

    圖  18  車輛鉸接角速度變化曲線

    Figure  18.  Curve of vehicle articulated angular velocity

    圖  19  車輛鉸接角度變化曲線

    Figure  19.  Curve of vehicle articulation angle

    圖  20  車輛路徑跟蹤的橫向位置偏差

    Figure  20.  Lateral positional deviation of vehicle path tracking

    圖  21  車輛路徑跟蹤的航向角偏差

    Figure  21.  Heading angle deviation of vehicle path tracking

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Nayl T, Nikolakopouls G, Gustafsson T. Kinematic modeling and extended simulation studies of a load hull dumping vehicle under the presence of slip angles // The International Conference on Modelling, Simulation and Identification. Pittsburgh, 2011
    [2] Zhan K, Gu H S, Zhou J W, et al. Remote controlling and precision positioning technologies of underground remote-controlled scrapers. Nonferrous Met, 2009, 61(1): 107 doi: 10.3969/j.issn.2095-1744.2009.01.026

    戰凱, 顧洪樞, 周俊武, 等. 地下遙控鏟運機遙控技術和精確定位技術研究. 有色金屬, 2009, 61(1): 107 doi: 10.3969/j.issn.2095-1744.2009.01.026
    [3] Dong J J, Zhang W M, Shi B Q. General of underground mining articulated dump truck and market in China. Coal Mine Machinery, 2007, 28(12): 1 doi: 10.3969/j.issn.1003-0794.2007.12.001

    董建軍, 張文明, 石博強. 地下礦用鉸接式自卸汽車的概況及中國市場分析. 煤礦機械, 2007, 28(12): 1 doi: 10.3969/j.issn.1003-0794.2007.12.001
    [4] Yakub F, Mori Y. Comparative study of autonomous path-following vehicle control via model predictive control and linear quadratic control. Proc Inst Mech Eng Part D J Automobile Eng, 2015, 229(12): 1695 doi: 10.1177/0954407014566031
    [5] Liu C, Zou Z J, Li T S. Path following of underactuated surface vessels with fin roll reduction based on neural network and hierarchical sliding mode technique. Neural Comput Appl, 2015, 26(7): 1525 doi: 10.1007/s00521-015-1821-3
    [6] Abatari H T, Tafti A D. Using a fuzzy PID controller for the path following of a car-like mobile robot // 2013 First RSI/ISM International Conference on Robotics and Mechatronics. Tehran, 2013: 189
    [7] Kritayakirana K, Gerdes J C. Using the centre of percussion to design a steering controller for an autonomous race car. Vehicle Syst Dyn, 2012, 50(Suppl 1): 33
    [8] Kapania N R, Gerdes J C. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling. Vehicle Syst Dyn, 2015, 53(12): 1687 doi: 10.1080/00423114.2015.1055279
    [9] Aslam J, Qin S Y, Alvi M A. Fuzzy sliding mode control algorithm for a four-wheel skid steer vehicle. J Mech Sci Technol, 2014, 28(8): 3301 doi: 10.1007/s12206-014-0741-y
    [10] Zhang L W, Xie W, Wang J C. Robust MPC for linear systems with structured time-varying uncertainties and saturating actuator. Asian J Control, 2017, 19(3): 1197 doi: 10.1002/asjc.1432
    [11] Di Cairano S, Bemporad A. Model predictive control tuning by controller matching. IEEE Trans Autom Control, 2010, 55(1): 185 doi: 10.1109/TAC.2009.2033838
    [12] Xi Y G, Li D W, Lin S. Model predictive control——status and challenges. Acta Autom Sin, 2013, 39(3): 222

    席裕庚, 李德偉, 林姝. 模型預測控制——現狀與挑戰. 自動化學報, 2013, 39(3): 222
    [13] Yu R, Guo H Y, Sun Z P, et al. MPC-based regional path tracking controller design for autonomous ground vehicles // 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Hongkon, 2015: 2510
    [14] Falcone P, Eric Tseng H, Borrelli F, et al. MPC-based yaw and lateral stabilisation via active front steering and braking. Vehicle Syst Dyn, 2008, 46(Suppl 1): 611
    [15] Nayl T, Nikolakopoulos G, Gustafsson T. A full error dynamics switching modeling and control scheme for an articulated vehicle. Int J Control Autom Syst, 2015, 13(5): 1221 doi: 10.1007/s12555-014-0049-9
    [16] Gong J W, Xu W, Jiang Y, et al. Multi-constrained model predictive control for autonomous ground vehicle trajectory tracking. J Beijing Inst Technol, 2015, 24(4): 441
    [17] Polotski V, Hemami A. Control of articulated vehicle for mining applications: modeling and laboratory experiments // Proceedings of the 1997 IEEE International Conference on Control Applications. Hartford, 1997: 318
    [18] Ridley P, Corke P. Load haul dump vehicle kinematics and control. J Dyn Syst Meas Control, 2003, 125(1): 54 doi: 10.1115/1.1541671
    [19] Wang J M, Steiber J, Surampudi B. Autonomous ground vehicle control system for high-speed and safe operation // Proceedings of the American Control Conference (2008). Seattle, 2008: 218
    [20] Zhao X, Yang J, Zhang W M, et al. Sliding mode control algorithm for path tracking of articulated dump truck. Trans Chin Soc Agric Eng, 2015, 31(10): 198 doi: 10.11975/j.issn.1002-6819.2015.10.026

    趙翾, 楊玨, 張文明, 等. 農用輪式鉸接車輛滑模軌跡跟蹤控制算法. 農業工程學報, 2015, 31(10): 198 doi: 10.11975/j.issn.1002-6819.2015.10.026
    [21] Li S B, Wang J Q, Li K Q. Stabilization of linear predictive control systems with softening constraints. J Tsinghua Univ Sci Technol, 2010, 50(11): 1848

    李升波, 王建強, 李克強. 軟約束線性模型預測控制系統的穩定性方法. 清華大學學報(自然科學版), 2010, 50(11): 1848
    [22] Dou F Q. Research on Path Tracking and Obstacles Avoidance for Autonomous Underground Mining Articulated Vehicles[Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    竇鳳謙. 地下礦用鉸接車路徑跟蹤與智能避障控制研究[學位論文]. 北京: 北京科技大學, 2018
    [23] Liu R, Duan J M. A path tracking algorithm of intelligent vehicle by preview strategy // Proceedings of the 32nd Chinese Control Conference. Xi'an, 2013: 5630
    [24] Bruschetta M, Cenedese C, Beghi A, et al. A motion cueing algorithm with look-ahead and driver characterization: application to vertical car dynamics. IEEE Trans Human-Mach Syst, 2018, 48(1): 6 doi: 10.1109/THMS.2017.2776207
    [25] Chan W W, Li J, Wang T B, et al. Preview control for road following of vision guided intelligent vehicle. Chin J Mech Eng, 2008, 44(10): 277 doi: 10.3321/j.issn:0577-6686.2008.10.047

    陳無畏, 李進, 王檀彬, 等. 視覺導航智能車輛的路徑跟蹤預瞄控制. 機械工程學報, 2008, 44(10): 277 doi: 10.3321/j.issn:0577-6686.2008.10.047
    [26] Lin F, Ni L Q, Zhao Y Q, et al. Path following control of intelligent vehicles considering lateral stability. J S China Univ Technol Nat Sci Ed, 2018, 46(1): 78 doi: 10.3969/j.issn.1000-565X.2018.01.010

    林棻, 倪蘭青, 趙又群, 等. 考慮橫向穩定性的智能車輛路徑跟蹤控制. 華南理工大學學報(自然科學版), 2018, 46(1): 78 doi: 10.3969/j.issn.1000-565X.2018.01.010
    [27] Nayl T, Nikolakopoulos G, Gustafsson T. Path following for an articulated vehicle based on switching model predictive control under varying speeds and slip angles // Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012). Krakow, 2012: 1
    [28] Jin L S, Gao L L, Xie X Y, et al. Fuzzy-optimal control of four-wheel independent steering vehicles. J Southwest Jiaotong Univ, 2016, 51(6): 1064 doi: 10.3969/j.issn.0258-2724.2016.06.004

    金立生, 高琳琳, 謝憲毅, 等. 四輪獨立轉向車輛穩定性的模糊最優控制方法. 西南交通大學學報, 2016, 51(6): 1064 doi: 10.3969/j.issn.0258-2724.2016.06.004
  • 加載中
圖(21)
計量
  • 文章訪問數:  1121
  • HTML全文瀏覽量:  481
  • PDF下載量:  59
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-04-13
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回