<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電場驅動熔融噴射沉積高分辨率3D打印

趙佳偉 蘭紅波 楊昆 彭子龍 李滌塵

趙佳偉, 蘭紅波, 楊昆, 彭子龍, 李滌塵. 電場驅動熔融噴射沉積高分辨率3D打印[J]. 工程科學學報, 2019, 41(5): 652-661. doi: 10.13374/j.issn2095-9389.2019.05.012
引用本文: 趙佳偉, 蘭紅波, 楊昆, 彭子龍, 李滌塵. 電場驅動熔融噴射沉積高分辨率3D打印[J]. 工程科學學報, 2019, 41(5): 652-661. doi: 10.13374/j.issn2095-9389.2019.05.012
ZHAO Jia-wei, LAN Hong-bo, YANG Kun, PENG Zi-long, LI Di-chen. High-resolution fused deposition 3D printing based on electric-field-driven jet[J]. Chinese Journal of Engineering, 2019, 41(5): 652-661. doi: 10.13374/j.issn2095-9389.2019.05.012
Citation: ZHAO Jia-wei, LAN Hong-bo, YANG Kun, PENG Zi-long, LI Di-chen. High-resolution fused deposition 3D printing based on electric-field-driven jet[J]. Chinese Journal of Engineering, 2019, 41(5): 652-661. doi: 10.13374/j.issn2095-9389.2019.05.012

電場驅動熔融噴射沉積高分辨率3D打印

doi: 10.13374/j.issn2095-9389.2019.05.012
基金項目: 

國家自然科學基金資助項目 51775288

國家自然科學基金資助項目 51875300

山東省重點研發計劃資助項目 2018GGX103022

詳細信息
    通訊作者:

    蘭紅波, E-mail: hblan99@126.com

  • 中圖分類號: TH164

High-resolution fused deposition 3D printing based on electric-field-driven jet

More Information
  • 摘要: 針對傳統熔融沉積成型面臨的成型精度低和打印材料受限, 基于電流體動力熔融沉積在成形高度、材料種類、基板導電性和平整性、3D成形能力等方面的不足和局限性, 本研究提出一種電場驅動熔融噴射沉積3D打印新工藝, 其采用雙加熱集成式噴頭并施加單極脈沖高電壓(單電勢), 利用電場驅動微量熱熔融材料噴射并精準沉積來形成高分辨率結構.引入兩種新的打印模式: 脈沖錐射流模式和連續錐射流模式, 拓展了可供打印材料的種類和范圍.通過理論分析、數值模擬和實驗研究, 揭示了所提出工藝的成形機理、作用機制以及成形規律.利用提出的電場驅動熔融噴射沉積3D打印方法, 結合優化工藝參數, 完成了三個典型工程案例, 即大尺寸微尺度模具、大高寬比微結構、宏微跨尺度組織支架和網格三維結構.其中采用內徑250 μm噴頭, 打印出最小線寬4 μm線柵結構, 高寬比達到25:1薄壁圓環微結構.結果表明, 電場驅動熔融噴射沉積高分辨率3D打印具有打印分辨率高、材料普適性廣、宏/微跨尺度的突出優勢, 為實現低成本、高分辨率熔融沉積3D打印提供了一種全新的解決方案.

     

  • 圖  1  電場驅動熔融噴射沉積高分辨率3D打印系統基本原理示意圖

    Figure  1.  Diagram of the basic principles of high-resolution fused deposition 3D printing based on electric-field-driven jetting system

    圖  2  脈沖錐射流和連續錐射流兩種打印模式成形原理和受力狀態示意圖. (a) 脈沖錐射流模; (b) 連續錐射流模

    Figure  2.  Diagram of the formation principle and force state of the pulsed-cone and continuous-cone jet printing modes: (a) pulsed cone-jet mode; (b) continuous cone-jet mode

    圖  3  電場驅動熱熔融噴射沉積高分辨率3D打印電場和溫度場仿真圖. (a) 電場分布和強度; (b) 溫度變化

    Figure  3.  Simulation of electric and temperature fields of high-resolution fused deposition 3D printing: (a) electric field distribution and strength; (b) temperature change

    圖  4  電場驅動熔融噴射沉積高分辨率3D打印實驗裝置照片

    Figure  4.  Experimental setup of high-resolution fused deposition 3D printing based on electric-field-driven jetting

    圖  5  噴嘴處熔滴動態演化和噴射示意圖. (a~c) 連續錐射流模式; (d~f) 脈沖錐射流模式

    Figure  5.  Images of dynamic evolution and injection of droplets at the nozzle: (a-c) continuous cone-jet mode; (d-f) pulsed cone-jet mode

    圖  6  電壓對于打印線圖案的影響和規律

    Figure  6.  Influence and rule of voltage for the print line pattern

    圖  7  工作臺速度對于打印線圖案的影響和規律

    Figure  7.  Influence and rule of stage speed for the print line pattern

    圖  8  線寬隨打印速度變化規律

    Figure  8.  Variation of line width with printing speed

    圖  9  脈沖錐射流打印模式打印微晶蠟點陣列和圖案

    Figure  9.  Dot arrays and patterns of microcrystalline wax printed using the pulsed-cone jet printing mode

    圖  10  大尺寸微尺度線柵結構模具. (a) 宏觀結構; (b) 微觀結構; (c) 單線三維結構

    Figure  10.  Large micro-scale wire-grid structure mold: (a) macrostructure; (b) micro structure; (c) single-line three-dimensional structure

    圖  11  打印的大高寬比微尺度“墻”結構(線寬50 μm,高寬比10∶1). (a) 俯視圖; (b) 前視圖

    Figure  11.  Micro-scale "wall" structure with a large aspect ratio (line width 50 μm; aspect ratio 10∶1): (a) top view; (b) front view

    圖  12  打印的大高寬比微尺度圓環(壁厚20 μm,直徑20 mm,高度500 μm,高寬比25∶1). (a) 宏觀結構; (b) 微觀結構

    Figure  12.  Microscale ring with a large aspect ratio (wall thickness 20 μm; diameter 20 mm; height 500 μm; aspect ratio 25∶1): (a) macrostructure; (b) micro structure

    圖  13  電場驅動熔融噴射沉積高分辨率3D打印的組織支架和網格三維結構. (a) 組織支架; (b) 網格三維結構

    Figure  13.  Fabrication of tissue scaffold and three-dimensional grid structure using the high-resolution fused deposition 3D printing method based on electric-field-driven jetting system: (a) tissue scaffold; (b) three-dimensional grid structure

    表  1  聚己內酯(PCL)材料性能參數

    Table  1.   Performance parameters of polycaprolactone (PCL) material

    性能參數 數值
    分子量 40000
    密度(25 ℃)/(g·mL-1) 1.146
    熔點/℃ 59~64
    熔融黏度/(dL·g-1) 11.25
    熔融指數范圍(每10 min)/g 7.3~28
    下載: 導出CSV

    表  2  石蠟(80號微晶蠟)材料性能參數

    Table  2.   Performance parameters of paraffin wax (80 microcrystalline wax)

    性能參數 數據
    分子量 650
    密度/(g·mL-1) 0.80~0.92
    熔點/℃ 72~82
    熔融黏度/(mm2·s-1) 10~20
    熔融指數范圍
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B: Eng, 2018, 143: 172 doi: 10.1016/j.compositesb.2018.02.012
    [2] MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science, 2016, 353(6307): 1512 http://www.ncbi.nlm.nih.gov/pubmed/27708075
    [3] Lewis J A, Ahn B Y. Device fabrication: Three-dimensional printed electronics. Nature, 2015, 518: 42 doi: 10.1038/518042a
    [4] Zhang B, Seong B, Nguyen V, et al. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J Micromech Microeng, 2016, 26(2): 025015 doi: 10.1088/0960-1317/26/2/025015
    [5] Bae J, Lee J, Hyun Kim S. Effects of polymer properties on jetting performance of electrohydrodynamic printing. J Appl Polym Sci, 2017, 134(35): 45044 doi: 10.1002/app.45044
    [6] Zou S T, Lan H B, Qian L, et al. Effects and rules of E-jet 3D printing process parameters on Taylor cone and printed patterns. Chin J Eng, 2018, 40(3): 373 doi: 10.13374/j.issn2095-9389.2018.03.014

    鄒淑亭, 蘭紅波, 錢壘, 等. 電流體動力噴射3D打印工藝參數對泰勒錐和打印圖形的影響和規律. 工程科學學報, 2018, 40(3): 373 doi: 10.13374/j.issn2095-9389.2018.03.014
    [7] Onses M S, Sutanto E, Ferreira P M, et al. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small, 2015, 11(34): 4237 doi: 10.1002/smll.201500593
    [8] Lan H B, Li D C, Lu B H. Micro-and nanoscale 3D printing. Scientia Sinica (Technol), 2015, 45(9): 919 https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201509002.htm

    蘭紅波, 李滌塵, 盧秉恒. 微納尺度3D打印. 中國科學: 技術科學, 2015, 45(9): 919 https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201509002.htm
    [9] Dalton P D. Melt electrowriting with additive manufacturing principles. Curr Opin Biomed Eng, 2017, 2: 49 doi: 10.1016/j.cobme.2017.05.007
    [10] Hrynevich A, El?i B S, Haigh J N, et al. Dimension-based design of melt electrowritten scaffolds. Small, 2018, 14(22): 1800232 doi: 10.1002/smll.201800232
    [11] Hochleitner G, Jüngst T, Brown T D, et al. Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication, 2015, 7(3): 035002 doi: 10.1088/1758-5090/7/3/035002
    [12] Muerza-Cascante M L, Haylock D, Hutmacher D W, et al. Melt electrospinning and its technologization in tissue engineering. Tissue Eng Part B, Rev, 2015, 21(2): 187 doi: 10.1089/ten.teb.2014.0347
    [13] Feiner R, Fleischer S, Shapira A, et al. Multifunctional degradable electronic scaffolds for cardiac tissue engineering. J Controlled Release, 2018, 281: 189 doi: 10.1016/j.jconrel.2018.05.023
    [14] Grémare A, Guduric V, Bareille R, et al. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res Part A, 2018, 106(4): 887 doi: 10.1002/jbm.a.36289
    [15] Ovsianikov A, Khademhosseini A, Mironov V. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol, 2018, 36(4): 348 doi: 10.1016/j.tibtech.2018.01.005
  • 加載中
圖(13) / 表(2)
計量
  • 文章訪問數:  1222
  • HTML全文瀏覽量:  528
  • PDF下載量:  38
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-07-11
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回