<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

類松果狀NiMoO4/MnO2復合材料的合成及超級電容性能

張勇 常翠榮 王詩文 高海麗 閆繼 賈曉東 羅河偉 高可政 張愛勤

張勇, 常翠榮, 王詩文, 高海麗, 閆繼, 賈曉東, 羅河偉, 高可政, 張愛勤. 類松果狀NiMoO4/MnO2復合材料的合成及超級電容性能[J]. 工程科學學報, 2019, 41(5): 646-651. doi: 10.13374/j.issn2095-9389.2019.05.011
引用本文: 張勇, 常翠榮, 王詩文, 高海麗, 閆繼, 賈曉東, 羅河偉, 高可政, 張愛勤. 類松果狀NiMoO4/MnO2復合材料的合成及超級電容性能[J]. 工程科學學報, 2019, 41(5): 646-651. doi: 10.13374/j.issn2095-9389.2019.05.011
ZHANG Yong, CHANG Cui-rong, WANG Shi-wen, GAO Hai-li, YAN Ji, JIA Xiao-dong, LUO He-wei, GAO Ke-zheng, ZHANG Ai-qin. Preparation and supercapacitive performance of pinecone-like NiMoO4/MnO2 composite material[J]. Chinese Journal of Engineering, 2019, 41(5): 646-651. doi: 10.13374/j.issn2095-9389.2019.05.011
Citation: ZHANG Yong, CHANG Cui-rong, WANG Shi-wen, GAO Hai-li, YAN Ji, JIA Xiao-dong, LUO He-wei, GAO Ke-zheng, ZHANG Ai-qin. Preparation and supercapacitive performance of pinecone-like NiMoO4/MnO2 composite material[J]. Chinese Journal of Engineering, 2019, 41(5): 646-651. doi: 10.13374/j.issn2095-9389.2019.05.011

類松果狀NiMoO4/MnO2復合材料的合成及超級電容性能

doi: 10.13374/j.issn2095-9389.2019.05.011
基金項目: 

國家自然科學基金資助項目 21503193

河南省高校科技創新團隊支持計劃資助項目 16IRTSTHN016

詳細信息
    通訊作者:

    張勇, E-mail: zy@zzuli.edu.cn

  • 中圖分類號: TM533

Preparation and supercapacitive performance of pinecone-like NiMoO4/MnO2 composite material

More Information
  • 摘要: 以Na2MoO4·2H2O、NiSO4·6H2O和MnO2為原料, 采用水熱法成功制備了類松果狀NiMoO4/MnO2復合材料.通過X射線衍射、掃描電子顯微鏡、恒電流充放電、循環伏安和交流阻抗對材料進行表征.結果表明, MnO2的最佳質量分數為10%, 所得NiMoO4/MnO2復合材料具有類松果狀形貌, 其顆粒直徑為200~600 nm, 且表面粗糙、多孔; 在1 A·g-1的電流密度下, MnO2質量分數為0、5%、10%、15%、20%時, 所得復合材料NM0、NM5、NM10、NM15和NM20的放電比電容分別為260、248、650、420和305 F·g-1.在電流密度為10 A·g-1下, 最佳樣品NM10復合材料的首次放電比容量為102 F·g-1, 經過100次循環后, 其放電比電容穩定在147 F·g-1.該性能的提高, 主要是由于MnO2的引入彌補了NiMoO4單一材料存在的不足, 從而達到協同增效的作用.

     

  • 圖  1  NM10復合材料樣品的X射線衍射圖譜

    Figure  1.  XRD patterns of the NM10 composite sample

    圖  2  NM10復合材料樣品的掃描電鏡照片. (a) 低倍; (b) 高倍

    Figure  2.  SEM images of the NM10 composite sample: (a) low magnification; (b) high magnification

    圖  3  不同MnO2含量下NiMoO4/MnO2復合材料在1 A·g-1下的恒流充放電曲線

    Figure  3.  Galvanostatic charge-discharge curves of NiMoO4/MnO2 composite materials with different MnO2 contents at 1 A·g-1

    圖  4  NM10復合材料在10 A·g-1下的循環性能曲線

    Figure  4.  Charge-discharge cycle performance curves of the NM10 composite sample at 10 A·g-1

    圖  5  不同MnO2含量下NiMoO4/MnO2復合材料在不同掃速下的循環伏安曲線

    Figure  5.  Cyclic voltammetry curves of NiMoO4/MnO2 composite materials with different MnO2 contents at different scan rates

    圖  6  不同MnO2含量下NiMoO4/MnO2復合材料的交流阻抗譜圖

    Figure  6.  EIS spectra of NiMoO4/MnO2 composites with different MnO2 contents

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Chen X D, Chen S Y, Qiao Z J, et al. Applications of supercapacitors. Energy Storage Sci Technol, 2016, 5(6): 800 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201606006.htm

    陳雪丹, 陳碩翼, 喬志軍, 等. 超級電容器的應用. 儲能科學與技術, 2016, 5(6): 800 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201606006.htm
    [2] Zhao X, Qiu P D, Jiang H J, et al. Latest research progress of electrode materials for supercapacitor. Electr Comp Mater, 2015, 34(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201501001.htm

    趙雪, 邱平達, 姜海靜, 等. 超級電容器電極材料研究最新進展. 電子元件與材料, 2015, 34(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201501001.htm
    [3] Oudghiri-Hassani H, Al Wadaani F. Preparation, characterization and catalytic activity of nickel molybdate (NiMoO4) nanoparticles. Molecules, 2018, 23(2): 273. doi: 10.3390/molecules23020273
    [4] Fang L X, Wang F, Zhai T L, et al. Hierarchical CoMoO4 nanoneedle electrodes for advanced supercapacitors and electrocatalytic oxygen evolution. Electrochim Acta, 2018, 259: 552 doi: 10.1016/j.electacta.2017.11.012
    [5] Li M G, Yang W W, Huang Y R, et al. Hierarchical mesoporous Co3O4@ZnCo2O4 hybrid nanowire arrays supported on Ni foam for high-performance asymmetric supercapacitors. Sci China Mater, 2018, 61(9): 1167 doi: 10.1007/s40843-017-9231-7
    [6] Lee G H, Lee S, Kim J C, et al. MnMoO4 electrocatalysts for superior long-life and high-rate lithium-oxygen batteries. Adv Energy Mater, 2017, 7(6): 1601741 doi: 10.1002/aenm.201601741
    [7] Deng T. Investigations of Co-based Electrode Materials for Supercapacitors and the Atomic-Level Energy Storage Mechanism[Dissertation]. Changchun: Jilin University, 2017

    鄧霆. 超級電容器鈷基電極材料制備及其儲能機理的研究[學位論文]. 長春: 吉林大學, 2017
    [8] Zhang Y, Feng H, Wu X B, et al. Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy, 2009, 34(11): 4889 doi: 10.1016/j.ijhydene.2009.04.005
    [9] Lü J L, Miura H, Yang M. A novel mesoporous NiMoO4@rGO nanostructure for supercapacitor applications. Mater Lett, 2017, 194: 94 doi: 10.1016/j.matlet.2017.02.040
    [10] Zhou D, Cheng P P, Luo J X, et al. Facile synthesis of graphene@NiMoO4 nanosheet arrays on Ni foam for a high-performance asymmetric supercapacitor. J Mater Sci, 2017, 52(24): 13909 doi: 10.1007/s10853-017-1467-x
    [11] Zhang Z, Liu Y D, Huang Z Y, et al. Facile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications. Phys Chem Chem Phys, 2015, 17(32): 20795 doi: 10.1039/C5CP03331D
    [12] Cao M L, Bu Y, Lü X W, et al. Three-dimensional TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays for lithium ion batteries. Appl Surf Sci, 2018, 435: 641 doi: 10.1016/j.apsusc.2017.11.165
    [13] Chen H, Yu L, Zhang J M, et al. Construction of hierarchical NiMoO4@MnO2 nanosheet arrays on titanium mesh for supercapacitor electrodes. Ceram Int, 2016, 42(16): 18058 doi: 10.1016/j.ceramint.2016.08.094
    [14] Zhao X, Wang H E, Chen X X, et al. Tubular MoO2 organized by 2D assemblies for fast and durable alkali-ion storage. Energy Storage Mater, 2018, 11: 161 doi: 10.1016/j.ensm.2017.10.010
    [15] Li Y F, Jian J M, Fan Y, et al. Facile one-pot synthesis of a NiMoO4/reduced graphene oxide composite as a pseudocapacitor with superior performance. RSC Adv, 2016, 6(73): 69627 doi: 10.1039/C6RA13955H
    [16] Gao H L, Wang L Z, Zhang Y, et al. Synthesis and electrochemical performances of Li2FeSiO4/C composite materials. J Chin Ceramic Soc, 2014, 42(4): 528 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201404017.htm

    高海麗, 王力臻, 張勇, 等. Li2FeSiO4/C復合材料的制備及電化學性能. 硅酸鹽學報, 2014, 42(4): 528 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201404017.htm
    [17] Wang X X, Zhang B Q, Yu M X, et al. Enhanced microwave absorption capacity of hierarchical structural MnO2@NiMoO4 composites. RSC Adv, 2016, 6(43): 36484 doi: 10.1039/C6RA05300A
    [18] Cai D P, Wang D D, Liu B, et al. Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Appl Mater Interfaces, 2014, 6(7): 5050 doi: 10.1021/am500060m
    [19] Pang M J, Jiang S, Ji Y, et al. Comparison of α-NiMoO4 nanorods and hierarchical α-NiMoO4@δ-MnO2 core-shell hybrid nanorod/nanosheet aligned on Ni foam for supercapacitors. J Alloys Compd, 2017, 708: 14 doi: 10.1016/j.jallcom.2017.02.282
    [20] Ma X J, Zhang W B, Kong L B, et al. NiMoO4-modified MnO2 hybrid nanostructures on nickel foam: electrochemical performance and supercapacitor applications. New J Chem, 2015, 39(8): 6207 doi: 10.1039/C5NJ00639B
    [21] Sun W. The Preparation of Nanometer Nickel (Cobalt) Hydroxide Electrode Materials and Their Electrchemical Properties[Dissertation]. Harbin: Harbin Engineering University, 2012

    孫薇. 納米氫氧化鎳(鈷)電極材料的制備及其電化學性能研究[學位論文]. 哈爾濱: 哈爾濱工程大學, 2012
    [22] Wang X H, Xia H Y, Gao J, et al. Enhanced cycle performance of ultraflexible asymmetric supercapacitors based on a hierarchical MnO2@NiMoO4 core-shell nanostructure and porous carbon. J Mater Chem A, 2016, 4(46): 18181 doi: 10.1039/C6TA07836B
    [23] Kazemi S H, Bahmani F, Kazemi H, et al. Binder-free electrodes of NiMoO4/graphene oxide nanosheets: synthesis, characterization and supercapacitive behavior. RSC Adv, 2016, 6(112): 111170 doi: 10.1039/C6RA23076H
    [24] Lin J H, Liang H Y, Jia H N, et al. Hierarchical CuCo2O4@NiMoO4 core-shell hybrid arrays as a battery-like electrode for supercapacitors. Inorg Chem Front, 2017, 4(9): 1575 doi: 10.1039/C7QI00361G
  • 加載中
圖(6)
計量
  • 文章訪問數:  1039
  • HTML全文瀏覽量:  433
  • PDF下載量:  23
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-05-17
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回