Preparation and supercapacitive performance of pinecone-like NiMoO4/MnO2 composite material
-
摘要: 以Na2MoO4·2H2O、NiSO4·6H2O和MnO2為原料, 采用水熱法成功制備了類松果狀NiMoO4/MnO2復合材料.通過X射線衍射、掃描電子顯微鏡、恒電流充放電、循環伏安和交流阻抗對材料進行表征.結果表明, MnO2的最佳質量分數為10%, 所得NiMoO4/MnO2復合材料具有類松果狀形貌, 其顆粒直徑為200~600 nm, 且表面粗糙、多孔; 在1 A·g-1的電流密度下, MnO2質量分數為0、5%、10%、15%、20%時, 所得復合材料NM0、NM5、NM10、NM15和NM20的放電比電容分別為260、248、650、420和305 F·g-1.在電流密度為10 A·g-1下, 最佳樣品NM10復合材料的首次放電比容量為102 F·g-1, 經過100次循環后, 其放電比電容穩定在147 F·g-1.該性能的提高, 主要是由于MnO2的引入彌補了NiMoO4單一材料存在的不足, 從而達到協同增效的作用.
-
關鍵詞:
- 復合材料 /
- 類松果狀 /
- NiMoO4/MnO2 /
- 水熱法 /
- 比電容
Abstract: Supercapacitors, also called electrochemical capacitors or ultracapacitors, have attracted increasing attention owing to their high specific capacitance, high power density, long lifecycle, fast charge-discharge ability, wide working temperature range, and environmental friendliness for mobile electronics, power grids, and hybrid electric vehicles. The electrode is the most important part of supercapacitors; therefore, the electrode material is the chief factor that determines the properties of supercapacitors. To enhance the performance of a supercapacitor, particularly its specific energy while retaining its intrinsic high specific power, several researchers have focused mainly on improving the properties of electrode materials. The major classes of materials applied for supercapacitors include various forms of carbon, transition metal oxides, and conductive polymers. Compared to the carbon materials and conducting polymer materials, transition metal oxides can achieve a much higher specific capacitance because of their high theoretical capacitance, well-defined electrochemical redox activity, low cost, and abundant resources. In particular, binary metal oxides, such as NiMoO4, MnMoO4, and CoMoO4, have been extensively studied as pseudocapacitor electrode materials because of their good electronic conductivity and rich redox reactions. In this study, pinecone-like NiMoO4/MnO2 composite materials were successfully synthesized using a facile hydrothermal method. Na2MoO4·2H2O, NiSO4·6H2O, and MnO2 were used as raw materials. The as-products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge-discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results show that when the optimal content of MnO2 reaches 10%, the obtained NiMoO4/MnO2 composite materials exhibits a pinecone-like porous morphology, with the particle size ranging from 200 to 600 nm. The results show that NiMoO4/MnO2 composite materials have excellent electrochemical properties. The discharge specific capacitance of NM0, NM5, NM10, NM15, and NM20 composites with corresponding MnO2 contents of 0%, 5%, 10%, 15%, and 20% are 260, 248, 650, 420, and 305 F·g-1, respectively, at a current density of 1 A·g-1. When the current density is up to 10 A·g-1, the initial discharge specific capacitance is 102 F·g-1. After 100-week cycles, the discharge specific capacitance of the NM10 sample is still 147 F·g-1. The improvements can be mainly attributed to the introduction of MnO2 in the NiMoO4/MnO2 composite materials to overcome the shortcomings of single NiMoO4.-
Key words:
- composite material /
- pinecone-like /
- NiMoO4/MnO2 /
- hydrothermal method /
- specific capacities
-
259luxu-164
-
參考文獻
[1] Chen X D, Chen S Y, Qiao Z J, et al. Applications of supercapacitors. Energy Storage Sci Technol, 2016, 5(6): 800 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201606006.htm陳雪丹, 陳碩翼, 喬志軍, 等. 超級電容器的應用. 儲能科學與技術, 2016, 5(6): 800 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201606006.htm [2] Zhao X, Qiu P D, Jiang H J, et al. Latest research progress of electrode materials for supercapacitor. Electr Comp Mater, 2015, 34(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201501001.htm趙雪, 邱平達, 姜海靜, 等. 超級電容器電極材料研究最新進展. 電子元件與材料, 2015, 34(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201501001.htm [3] Oudghiri-Hassani H, Al Wadaani F. Preparation, characterization and catalytic activity of nickel molybdate (NiMoO4) nanoparticles. Molecules, 2018, 23(2): 273. doi: 10.3390/molecules23020273 [4] Fang L X, Wang F, Zhai T L, et al. Hierarchical CoMoO4 nanoneedle electrodes for advanced supercapacitors and electrocatalytic oxygen evolution. Electrochim Acta, 2018, 259: 552 doi: 10.1016/j.electacta.2017.11.012 [5] Li M G, Yang W W, Huang Y R, et al. Hierarchical mesoporous Co3O4@ZnCo2O4 hybrid nanowire arrays supported on Ni foam for high-performance asymmetric supercapacitors. Sci China Mater, 2018, 61(9): 1167 doi: 10.1007/s40843-017-9231-7 [6] Lee G H, Lee S, Kim J C, et al. MnMoO4 electrocatalysts for superior long-life and high-rate lithium-oxygen batteries. Adv Energy Mater, 2017, 7(6): 1601741 doi: 10.1002/aenm.201601741 [7] Deng T. Investigations of Co-based Electrode Materials for Supercapacitors and the Atomic-Level Energy Storage Mechanism[Dissertation]. Changchun: Jilin University, 2017鄧霆. 超級電容器鈷基電極材料制備及其儲能機理的研究[學位論文]. 長春: 吉林大學, 2017 [8] Zhang Y, Feng H, Wu X B, et al. Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy, 2009, 34(11): 4889 doi: 10.1016/j.ijhydene.2009.04.005 [9] Lü J L, Miura H, Yang M. A novel mesoporous NiMoO4@rGO nanostructure for supercapacitor applications. Mater Lett, 2017, 194: 94 doi: 10.1016/j.matlet.2017.02.040 [10] Zhou D, Cheng P P, Luo J X, et al. Facile synthesis of graphene@NiMoO4 nanosheet arrays on Ni foam for a high-performance asymmetric supercapacitor. J Mater Sci, 2017, 52(24): 13909 doi: 10.1007/s10853-017-1467-x [11] Zhang Z, Liu Y D, Huang Z Y, et al. Facile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications. Phys Chem Chem Phys, 2015, 17(32): 20795 doi: 10.1039/C5CP03331D [12] Cao M L, Bu Y, Lü X W, et al. Three-dimensional TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays for lithium ion batteries. Appl Surf Sci, 2018, 435: 641 doi: 10.1016/j.apsusc.2017.11.165 [13] Chen H, Yu L, Zhang J M, et al. Construction of hierarchical NiMoO4@MnO2 nanosheet arrays on titanium mesh for supercapacitor electrodes. Ceram Int, 2016, 42(16): 18058 doi: 10.1016/j.ceramint.2016.08.094 [14] Zhao X, Wang H E, Chen X X, et al. Tubular MoO2 organized by 2D assemblies for fast and durable alkali-ion storage. Energy Storage Mater, 2018, 11: 161 doi: 10.1016/j.ensm.2017.10.010 [15] Li Y F, Jian J M, Fan Y, et al. Facile one-pot synthesis of a NiMoO4/reduced graphene oxide composite as a pseudocapacitor with superior performance. RSC Adv, 2016, 6(73): 69627 doi: 10.1039/C6RA13955H [16] Gao H L, Wang L Z, Zhang Y, et al. Synthesis and electrochemical performances of Li2FeSiO4/C composite materials. J Chin Ceramic Soc, 2014, 42(4): 528 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201404017.htm高海麗, 王力臻, 張勇, 等. Li2FeSiO4/C復合材料的制備及電化學性能. 硅酸鹽學報, 2014, 42(4): 528 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201404017.htm [17] Wang X X, Zhang B Q, Yu M X, et al. Enhanced microwave absorption capacity of hierarchical structural MnO2@NiMoO4 composites. RSC Adv, 2016, 6(43): 36484 doi: 10.1039/C6RA05300A [18] Cai D P, Wang D D, Liu B, et al. Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Appl Mater Interfaces, 2014, 6(7): 5050 doi: 10.1021/am500060m [19] Pang M J, Jiang S, Ji Y, et al. Comparison of α-NiMoO4 nanorods and hierarchical α-NiMoO4@δ-MnO2 core-shell hybrid nanorod/nanosheet aligned on Ni foam for supercapacitors. J Alloys Compd, 2017, 708: 14 doi: 10.1016/j.jallcom.2017.02.282 [20] Ma X J, Zhang W B, Kong L B, et al. NiMoO4-modified MnO2 hybrid nanostructures on nickel foam: electrochemical performance and supercapacitor applications. New J Chem, 2015, 39(8): 6207 doi: 10.1039/C5NJ00639B [21] Sun W. The Preparation of Nanometer Nickel (Cobalt) Hydroxide Electrode Materials and Their Electrchemical Properties[Dissertation]. Harbin: Harbin Engineering University, 2012孫薇. 納米氫氧化鎳(鈷)電極材料的制備及其電化學性能研究[學位論文]. 哈爾濱: 哈爾濱工程大學, 2012 [22] Wang X H, Xia H Y, Gao J, et al. Enhanced cycle performance of ultraflexible asymmetric supercapacitors based on a hierarchical MnO2@NiMoO4 core-shell nanostructure and porous carbon. J Mater Chem A, 2016, 4(46): 18181 doi: 10.1039/C6TA07836B [23] Kazemi S H, Bahmani F, Kazemi H, et al. Binder-free electrodes of NiMoO4/graphene oxide nanosheets: synthesis, characterization and supercapacitive behavior. RSC Adv, 2016, 6(112): 111170 doi: 10.1039/C6RA23076H [24] Lin J H, Liang H Y, Jia H N, et al. Hierarchical CuCo2O4@NiMoO4 core-shell hybrid arrays as a battery-like electrode for supercapacitors. Inorg Chem Front, 2017, 4(9): 1575 doi: 10.1039/C7QI00361G -