Preparation process of silver clad aluminum bars by vertical continuous casting composite forming
-
摘要: 以直徑20 mm, 包覆比50%的銀包鋁細棒為研究對象, 通過有限元數值模擬以及相應的實驗驗證, 得出了銀包鋁復合材料立式連鑄復合成形工藝的邊界條件.采用ProCAST軟件模擬了立式連鑄成形過程, 得出各工藝參數對連鑄結果的影響規律, 給出了可行的連鑄工藝參數范圍及工藝調控策略, 以模擬結果為指導, 制備出表面質量高、復合界面效果良好的銀包鋁復合棒材.實驗結果表明, 芯管長度、連鑄速度對結果的影響最大, 芯管長度影響了芯管出口處雙金屬的接觸溫度、接觸時間, 并直接改變了鋁芯固液界面的相對位置.當芯管長度過短時, 銀鋁界面反應較強烈, 當芯管長度過長時, 芯棒冷卻強度大, 芯部鋁產生明顯的冷隔.隨著連鑄速度的增大, 銀的固液界面到芯管出口距離逐漸減小, 鋁的固液界面距出口距離逐漸增大; 鋁液鑄造溫度升高, 冷卻水減少也會帶來相似的作用.結果顯示, 芯管長度30 mm, 速度37~67 mm·min-1, 銀的鑄造溫度1225~1325℃, 鋁的鑄造溫度800℃, 冷卻水流量約300 L·h-1是可行的銀包鋁連鑄工藝.Abstract: Silver clad aluminum composite wire, which combines the high electrical conductivity of silver-coated metal, good welding performance, and low density, has wide application prospects in aerospace and other fields. The preparation of silver clad aluminum bars with high surface quality and good combination of interfaces is an important step in the preparation of silver clad aluminum wire with excellent performance. Continuous casting composite forming is a short, high-efficiency material-forming process, which provides methods for the preparation of silver clad aluminum. The boundary conditions of the vertical continuous casting process of silver clad aluminum composite rod that has a diameter of 20 mm and cladding ratio of 50% were established through finite element numerical simulation using the ProCAST software and corresponding experiments. The effect of each process parameter on continuous composite casting was analyzed, based on which the optimized control method was obtained. A silver clad aluminum composite rod with high surface quality and excellent bonding interface was prepared on the basis of the simulation results. The length of the core tube and the speed of continuous casting are considered to be the most important factors affecting the formation process. The length of the core tube is assumed to affect the contact temperature and time of the aluminum liquid and silver tube at the end of the core tube, and result in the variation of the relative position of the solid-liquid interface of the aluminum. The interface reaction is severe when the core tube is too short. Conversely, significant cold separation occurs in aluminum because of the high cooling intensity when length of the core tube is too large. The actual casting temperature increases with the high continuous casting speed, which can be attributed to the reduction in the distance between solid-liquid interface and the outlet of the core tube for silver and the increase for aluminum. The increase in aluminum casting temperature and reduction in the flow rate of cooling water are found to have a similar effect to that of the increase in continuous casting speed. A series of optimized casting parameters was obtained in this study, i.e., length of the core tube 30 mm, the casting speed is 37-67 mm·min-1, the casting temperature of silver is in the range between 1225℃ and 1325℃, casting temperature of aluminum is 800℃, and the flow rate of cooling water is 300 L·h-1.
-
表 1 棒材與模具的換熱系數
Table 1. Heat transfer coefficient between casting billet and molds
溫度/℃ 空氣熱導率/(W·m-1·K-1) 氣縫寬度/mm 換熱系數/(W·m-2·K-1) 100 0.0321 0.1683 190.75 300 0.0461 0.1293 356.58 500 0.0575 0.0903 636.87 700 0.0671 0.0513 1308.40 800 0.0717 0.0318 2255.80 900 0.0767 0.0123 2500.00 表 2 驗證實驗中的工藝參數選擇
Table 2. Process parameters of the validation experiment
組別 冷卻水流量/(L·h-1) 連鑄速度/(mm·min-1) 芯管長度/mm 鋁連鑄溫度/℃ 合金連鑄溫度/℃ Ⅰ 300 30 40 720 600 Ⅱ 300 30 30 720 600 Ⅲ 300 45 30 720 600 表 3 三組測試點模擬與實測溫度比較
Table 3. Comparison of the simulated/measured temperatures of the test points
組別 a點溫度(實測/模擬)/℃ b點溫度(實測/模擬)/℃ c點溫度(實測/模擬)/℃ 1 850/850 762/760 471/470 2 820/820 752/760 449/431 3 810/820 745/750 483/420 表 4 各組實驗的工藝參數
Table 4. Experimental parameters of every group
組別 冷卻水流量,w/(L·h-1) 連鑄速度,v/(mm·min-1) 芯管長度,l/mm 銀熔化溫度,T1/℃ 鋁熔化溫度,T2/℃ A 300 45 20, 25, 30, 35, 40 1250 800 B 300 15, 30, 45, 60, 75 30 1250 800 C 200, 250, 300, 350, 400 45 30 1250 800 D 300 45 30 1250 700, 800, 900 E 300 45 30 1175, 1200, 1225, 1250, 1270 800 表 5 銀包鋁連鑄復合模擬結果
Table 5. Simulation results of the continuous casting of SCA
組別 實驗編號 參數 模擬結果 名稱 數值 L1/mm L2/mm L3/mm t/s ΔT/℃ 1 20 1.5 31.4 18.5 42 61 2 25 17 13.5 8 18 211 A 3 芯管長度/mm 30 22 6.5 8 8.7 259 4 35 27.5 -1 7.5 — 311 5 40 32.5 -5 7.5 — 354 6 15 24 1 6 4 287 7 30 23 4 7 8 272 B 8 連鑄速度/(mm·min-1) 45 22 6.5 8 8.7 259 9 60 21.5 8.5 8.5 8.5 248 10 75 20.5 11.4 9.5 9.12 234 11 200 22 7 8 9.3 256 12 250 22 7 8 9.3 257 C 13 冷卻水流量/(L·h-1) 300 22 6.5 8 8.7 259 14 350 22.5 6 7.5 8 260 15 400 22.5 6 7.5 8 260 16 700 22 6.2 8 8.3 261 D 17 鋁熔化溫度/℃ 800 22 6.5 8 8.7 259 18 900 22 6.8 8 8.7 257 19 1175 40 2 - 2.7 284 20 1200 26 4 4 5.4 275 E 21 銀熔化溫度/℃ 1225 24 5 6 6.7 268 22 1250 22 6.5 8 8.7 259 23 1275 21 7 9 9.3 255 表 6 銀鋁界面層成分分布
Table 6. Composition distribution of the silver-clad aluminum interface layer
圖 12中測試點 Ag(1280 ℃)
質量分數/%Ag(1260 ℃)
質量分數/%Ag(1250 ℃)
質量分數/%圖 12中測試點 Ag(1280 ℃)
質量分數/%Ag(1260 ℃)
質量分數/%Ag(1250 ℃)
質量分數/%1 97.14 97.40 96.97 7 85.13 81.90 85.44 2 97.14 97.89 96.94 8 84.78 35.86 84.65 3 97.14 97.52 96.41 9 84.30 28.66 33.65 4 88.63 87.28 96.29 10 33.42 38.49 25.32 5 86.57 85.50 87.20 11 48.74 43.25 40.99 6 85.75 83.71 85.84 12 35.99 47.54 33.55 259luxu-164 -
參考文獻
[1] Su S, Liu X H, Liu X F, et al. Fabrication processing of silver clad aluminum composite wire. Chin J Nonferrous Met, 2007, 17(12): 1960 doi: 10.3321/j.issn:1004-0609.2007.12.009蘇順, 劉新華, 劉雪峰, 等. 銀包鋁復合絲材的制備工藝. 中國有色金屬學報, 2007, 17(12): 1960 doi: 10.3321/j.issn:1004-0609.2007.12.009 [2] Zhang J, Wang B H, Chen G H, et al. Formation and growth of Cu-Al IMCs and their effect on electrical property of electroplated Cu/Al laminar composites. Trans Nonferrous Met Soc China, 2016, 26(12): 3283 doi: 10.1016/S1003-6326(16)64462-X [3] Zu G Y, Li X B, Ding M M, et al. Investigating deformation behavior of asymmetrically rolled Cu/Al bimetal clad sheets. J Northeastern Univ Nat Sci, 2011, 32(5): 675 doi: 10.3969/j.issn.1005-3026.2011.05.017祖國胤, 李小兵, 丁明明, 等. 異步軋制銅/鋁雙金屬復合板變形行為的研究. 東北大學學報(自然科學版), 2011, 32(5): 675 doi: 10.3969/j.issn.1005-3026.2011.05.017 [4] Gulenc B. Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method. Mater Des, 2008, 29(1): 275 doi: 10.1016/j.matdes.2006.11.001 [5] Durgutlu A, Gülenc B, Findik F. Examination of copper/stainless steel joints formed by explosive welding. Mater Des, 2005, 26(6): 497 doi: 10.1016/j.matdes.2004.07.021 [6] Raghukandan K. Analysis of the explosive cladding of cu-low carbon steel plates. J Mater Process Technol, 2003, 139(1-3): 573 doi: 10.1016/S0924-0136(03)00539-9 [7] Liu X Y, Ma X X, Fan H, et al. Preparation of Cu-Ag composite alloy bonding wire. Gold, 2017, 38(8): 4 https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201708002.htm劉希云, 馬曉霞, 范紅, 等. Cu-Ag復合合金絲的制備. 黃金, 2017, 38(8): 4 https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201708002.htm [8] Xie S K, Chen J P, Wan J X, et al. Manufacture process and mechanical performance of CCA bimetal wire. Mater Rev, 2008, 22(5): 83 doi: 10.3321/j.issn:1005-023X.2008.05.020謝世坤, 陳京平, 萬建新, 等. 雙金屬銅包鋁線的制備工藝與力學性能. 材料導報, 2008, 22(5): 83 doi: 10.3321/j.issn:1005-023X.2008.05.020 [9] Chen J M, Zhang X M, Deng Y L, et al. Analysis of causes of fracture of special long continuously cast stell during explosive cladding. World Nonferrous Met, 2002(7): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-COLO200207008.htm陳健美, 張新明, 鄧運來, 等. 特長連鑄鋼坯爆炸焊接包覆發生斷裂的原因分析. 世界有色金屬, 2002(7): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-COLO200207008.htm [10] Dai Y K, Wang Y K, Liu P J, et al. Mechanism study of clad-welding and drawing method for copper clad aluminum wire metallurgical bonding. Electr Wire Cable, 2003(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DXDL201306001.htm戴雅康, 王玉凱, 劉丕家, 等. 包覆焊接-拉拔法銅包鋁線冶金結合機理的探討. 電線電纜, 2003(6): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-DXDL201306001.htm [11] Xie J X. Developing situation and prospects of materials processing technologies. J Mech Eng, 2003, 39(9): 29 doi: 10.3321/j.issn:0577-6686.2003.09.005謝建新. 材料加工技術的發展現狀與展望. 機械工程學報, 2003, 39(9): 29 doi: 10.3321/j.issn:0577-6686.2003.09.005 [12] Wu Y F, Liu X H, Xie J X, et al. Copper cladding aluminum composite materials with rectangle section fabricated by horizontal core-filling continuous casting. Chin J Nonferrous Met, 2012, 22(9): 2500 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201209013.htm吳永福, 劉新華, 謝建新, 等. 矩形斷面銅包鋁復合材料的水平連鑄直接復合成形. 中國有色金屬學報, 2012, 22(9): 2500 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201209013.htm [13] Zhang J Y, Zeng X Y, Han Y Q, et al. Formation mechanism of interface in copper cladding aluminum composites fabricated by core-filling continuous casting. Chin J Nonferrous Met, 2014, 24(11): 2755 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201411008.htm張建宇, 曾祥勇, 韓艷秋, 等. 充芯連鑄銅包鋁復合材料的界面形成機理. 中國有色金屬學報, 2014, 24(11): 2755 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201411008.htm [14] Xue Z Y, Wu C J, Xie J X. Effects of processing variables on the surface quality of Cu-cladding Al rod in continuous casting with core-filling. Special Casting Nonferrous Alloys, 2006, 26(2): 121 doi: 10.3321/j.issn:1001-2249.2006.02.021薛志勇, 吳春京, 謝建新. 充芯連鑄銅包鋁棒坯工藝參數對表面質量的影響. 特種鑄造及有色合金, 2006, 26(2): 121 doi: 10.3321/j.issn:1001-2249.2006.02.021 [15] Wu Y F, Liu X H, Xie J X. Interface of copper cladding aluminum composite materials with rectangle section fabricated by horizontal core-filling continuous casting and its evolvement in rolling process. Chin J Nonferrous Met, 2013, 23(1): 191 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201301028.htm吳永福, 劉新華, 謝建新. 連鑄直接成形矩形斷面銅包鋁復合材料界面及其在軋制中的變化. 中國有色金屬學報, 2013, 23(1): 191 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201301028.htm [16] Zhang H A, Chen G. Fabrication of Cu/Al compound materials by solid-liquid bonding method and interface bonding mechanism. Chin J Nonferrous Met, 2008, 18(3): 414 doi: 10.3321/j.issn:1004-0609.2008.03.007張紅安, 陳剛. 銅/鋁復合材料的固—液復合法制備及其界面結合機理. 中國有色金屬學報, 2008, 18(3): 414 doi: 10.3321/j.issn:1004-0609.2008.03.007 [17] Li H, Long P, Niu Y S, et al. Fabrication of Al/Cu composite: theoretical and technological progresses. Mater Rev, 2016, 30(4): 148 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201607027.htm李慧, 龍萍, 牛永勝, 等. Al/Cu復合材料制備中理論與工藝研究進展. 材料導報, 2016, 30(4): 148 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201607027.htm [18] Xie J X, Sun D Q, Wu C J, et al. Fabrication of bimetallic composite materials with duel-mold continuous casting technique. J Mater Eng, 2000(4): 38 doi: 10.3969/j.issn.1001-4381.2000.04.011謝建新, 孫德勤, 吳春京, 等. 雙金屬復合材料雙結晶器連鑄工藝研究. 材料工程, 2000(4): 38 doi: 10.3969/j.issn.1001-4381.2000.04.011 [19] Su Y J, Liu X H, Wu Y F, et al. Microstructure and properties of copper cladding aluminum rod fabricated by horizontal core-filling continuous casting. Special Casting Nonferrous Alloys, 2011, 31(9): 785 doi: 10.3870/tzzz.2011.09.001蘇亞軍, 劉新華, 吳永福, 等. 水平連鑄直接復合成形銅包鋁復合材料的組織與性能. 特種鑄造及有色合金, 2011, 31(9): 785 doi: 10.3870/tzzz.2011.09.001 [20] Mei J, Liu X H, Xie J X. Solidification temperature field simulation of BFe10 cupronickel tube during heating-cooling combined mold continuous casting. Chin J Nonferrous Met, 2012, 22(5): 1430 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201205027.htm梅俊, 劉新華, 謝建新. BFe10白銅管材熱冷組合鑄型水平連鑄凝固溫度場模擬. 中國有色金屬學報, 2012, 22(5): 1430 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201205027.htm [21] Liu X H, Fu X T, Fu H D, et al. Numerical simulation analysis of effects of processing parameters on forming process of vertical continuous core-filling casting for copper clad aluminum billets with large section. Chin J Nonferrous Met, 2017, 27(3): 514 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201703009.htm劉新華, 付新彤, 付華棟, 等. 大斷面銅包鋁棒坯立式連鑄成形工藝參數對連鑄復合過程影響的數值模擬. 中國有色金屬學報, 2017, 27(3): 514 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201703009.htm [22] Ning Y T, Zhao H Z. Silver. Changsha: Central South University Press, 2005寧遠濤, 趙懷志. 銀. 長沙: 中南大學出版社, 2005 [23] Xue B. Engineering Thermodynamics. Xi'an: Shanxi Science & Technology Press, 2005薛兵. 工程熱力學. 西安: 陜西科學技術出版社, 2005 [24] Zhang X J, Liu X H, Wu Y F, et al. Simulation on temperature field for solidification process of horizontal core-filling continuous casting of copper clad aluminum bars. Foundry Eng, 2013, 37(3): 10 doi: 10.3969/j.issn.1673-3320.2013.03.004張小軍, 劉新華, 吳永福, 等. 銅包鋁扁坯水平連鑄直接復合成形過程溫度場的數值模擬. 鑄造工程, 2013, 37(3): 10 doi: 10.3969/j.issn.1673-3320.2013.03.004 [25] Li Y L. Engineering Thermodynamics and Heat Transfer. 2nd Ed. Beijing: China Communications Press, 2013李岳林. 工程熱力學與傳熱學. 2版. 北京: 人民交通出版社, 2013 [26] Zhang L W, Zhang Y, Zhang J Z, et al. Analysis on the macrostructure of 600 mm 35CrMo round steel billet produced by vertical continuous casting. J Univ Sci Technol Liaoning, 2018, 41(1): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-ASGT201801003.htm張連望, 張羽, 張佳正, 等. 600 mm 35CrMo鋼立式連鑄圓坯宏觀組織分析. 遼寧科技大學學報, 2018, 41(1): 14 https://www.cnki.com.cn/Article/CJFDTOTAL-ASGT201801003.htm [27] Zhao Z G, Yan H C, Qiu S T, et al. Pilot processing of Φ100 mm billet of high speed steel W6Mo5Cr4V2 by vertical continuous casting. Special Steel, 2015, 36(1): 41 doi: 10.3969/j.issn.1003-8620.2015.01.012趙志剛, 顏慧成, 仇圣桃, 等. 立式連鑄高速鋼W6Mo5Cr4V2 Φ100 mm坯的工藝試驗. 特殊鋼, 2015, 36(1): 41 doi: 10.3969/j.issn.1003-8620.2015.01.012 [28] Qiao J S, Nie S C, Zhang H, et al. Microstructure and mechanical properties of interfaces of extruded cladding Mg-Al rods. Chin J Rare Met, 2015, 39(6): 481 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201506001.htm喬及森, 聶書才, 張涵, 等. 鋁鎂包覆擠壓材料界面微觀組織與力學性能研究. 稀有金屬, 2015, 39(6): 481 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201506001.htm -