Influence of KBr concentration on corrosion behaviors of 13Cr stainless steels under high temperature and high pressure
-
摘要: 油氣工業中溴鹽完井液的使用極易導致油套管腐蝕失效的發生, 尤其是局部腐蝕風險.針對這一問題, 采用高溫高壓腐蝕模擬試驗、掃描電鏡觀察與分析、電化學測試等試驗研究方法, 研究了高溫高壓環境下不同濃度溴鹽溶液對普通13Cr和超級13Cr兩種典型油套管材腐蝕行為的影響.結果表明: 從平均腐蝕速率來看, 兩種13Cr管材在三種濃度溴鹽溶液中均表現出較好的耐蝕性能, 屬于輕度或中度腐蝕, 但從局部腐蝕速率來看, 兩種材料均達到嚴重或極嚴重腐蝕; 隨著溴鹽濃度的提高, 普通13Cr的自腐蝕電位和點蝕電位均明顯負移, 對應材料的平均腐蝕速率和局部腐蝕速率均明顯上升, 而超級13Cr僅點蝕電位明顯負移, 自腐蝕電位則相對穩定, 對應其平均腐蝕速率變化幅度較小, 局部腐蝕速率則明顯上升, 這說明相比普通13Cr, 超級13Cr對溴鹽溶液具有更強的整體耐受能力, 但局部腐蝕敏感性仍然較高; 激光共聚焦(LSCM)三維表征結果表明, 在高質量濃度溴鹽溶液(1.40 g·cm-3)中, 不論是普通13Cr還是超級13Cr都有明顯的點蝕傾向, 這主要與溶液中高濃度的侵蝕性陰離子Br-有關, 相比于普通13Cr, 超級13Cr的點蝕敏感性相對較低, 但其點蝕風險仍不可忽視.Abstract: Recently, the use of bromine completion fluids in the oil and gas industry has caused numerous severe corrosion problems of the oil well casing and tubing, particularly the localized corrosion failure. Bromine completion fluids, such as KBr solution, are highly corrosive to steels. Even if the stainless steel is subjected to a high concentration of bromate under high temperature and pressure, it can still experience severe corrosion failure risks. In this study, the influence of KBr concentrations on corrosion behaviors of plain and super 13Cr steels under high temperature and pressure was investigated by corrosion simulation, scanning electron microscopy (SEM) observation, and electrochemical measurements. The results show that both plain and super 13Cr steels exhibit good corrosion resistance in KBr solutions with various concentrations regarding average corrosion rate, which is either mild or moderate. However, the local corrosion rates of plain and super 13Cr steels are serious or extremely serious. With the increase of bromide concentration, the free corrosion and pitting potentials of plain 13Cr steel significantly decrease. Both the average and local corrosion rates increase significantly. For super 13Cr steel, the pitting potential decreases, whereas the free potential remains relatively stable. The average corrosion rate of super 13Cr steel shows a lower scope of change than the local corrosion rate, which increases significantly and indicates that super 13Cr steel is much more corrosion resistant than plain 13Cr steel, but its local corrosion sensitivity is still high. Laser scanning confocal microscopy (LSCM) results show that both plain and super 13Cr steels exhibit serious pitting corrosion in a KBr solution with a concentration of 1.40 g·cm-3, and this is related to the aggressiveness of Br-. Compared with plain 13Cr steel, super 13Cr steel shows a lower pitting sensitivity; however, its pitting corrosion risk cannot be ignored.
-
圖 4 普通13Cr在不同質量濃度溴鹽溶液下腐蝕7 d后酸洗前(左)和酸洗后(右)的宏觀腐蝕形貌照片. (a, b) 1.01 g·cm-3; (c, d) 1.10 g·cm-3; (e, f) 1.40 g·cm-3
Figure 4. Macro-photographs of plain 13Cr steel before (left) and after (right) cleaning after seven days exposure in KBr solutions with different concentrations: (a, b) 1.01 g·cm-3; (c, d) 1.10 g·cm-3; (e, f) 1.40 g·cm-3
圖 5 超級13Cr在不同質量濃度溴鹽溶液下腐蝕7 d后酸洗前(左)和酸洗后(右)的宏觀腐蝕形貌照片. (a, b) 1.01 g·cm-3; (c, d) 1.10 g·cm-3; (e, f) 1.40 g·cm-3
Figure 5. Macro-photographs of super 13Cr steel before (left) and after (right) cleaning after seven days exposure in KBr solutions with different concentrations: (a, b) 1.01 g·cm-3; (c, d) 1.10 g·cm-3; (e, f) 1.40 g·cm-3
表 1 實驗所用的兩種13Cr不銹鋼材質成分(質量分數)
Table 1. Main chemical composition of the two kinds of 13Cr steels
材料 C Cr Ni Mo Si Mn P S V Fe 普通13Cr 0.19 12.1 0.30 0.23 0.015 0.004 0.042 余量 超級13Cr 0.03 13.2 5.12 2.11 0.35 0.39 0.016 余量 表 2 三種不同濃度的溴鹽溶液成分
Table 2. Chemical compositions of three test solutions with different concentrations
溶液密度/(g·cm-3) 配置1 L溴鹽溶液 KBr質量/g 去離子水體積/L 1.01 10 1 1.10 100 1 1.40 400 1 259luxu-164 -
參考文獻
[1] Zhang G C, Lin G F, Sun Y L, et al. Research on corrosion resistance of 13Cr stainless steel. Total Corros Control, 2011, 25(4): 16 doi: 10.3969/j.issn.1008-7818.2011.04.004張國超, 林冠發, 孫育祿, 等. 13Cr不銹鋼腐蝕性能的研究現狀與進展. 全面腐蝕控制, 2011, 25(4): 16 doi: 10.3969/j.issn.1008-7818.2011.04.004 [2] Chu W Y, Wang Y B, Guan Y S, et al. Design of API C90 tubular steel. Acta Metall Sinica, 1998, 31(10): 1073 doi: 10.3321/j.issn:0412-1961.1998.10.012褚武揚, 王燕斌, 關永生, 等. 抗H2S石油套管鋼的設計. 金屬學報, 1998, 31(10): 1073 doi: 10.3321/j.issn:0412-1961.1998.10.012 [3] Lü X H, Zhao G X, Wang Y, et al. SSC resistance of super 13Cr martensitic stainless steel. J Mater Eng, 2011(2): 17 doi: 10.3969/j.issn.1001-4381.2011.02.004呂祥鴻, 趙國仙, 王宇, 等. 超級13Cr馬氏體不銹鋼抗SSC性能研究. 材料工程, 2011(2): 17 doi: 10.3969/j.issn.1001-4381.2011.02.004 [4] Chen Y, Bai Z Q. Compare of CO2 corrosion resistance of 13Cr and N80 steel under high temperature and high pressure. Chem Eng Oil Gas, 2007, 36(3): 239 doi: 10.3969/j.issn.1007-3426.2007.03.016陳堯, 白真權. 13Cr和N80鋼高溫高壓抗腐蝕性能比較. 石油與天然氣化工, 2007, 36(3): 239 doi: 10.3969/j.issn.1007-3426.2007.03.016 [5] Cai L. The Research and Application of Environmentally Friendly Completion Fluid[Dissertation]. Daqing: Daqing Petroleum Institute, 2009蔡亮. 環保型完井液的研究與應用[學位論文]. 大慶: 大慶石油學院, 2009 [6] Liu Y, Xu L N, Zhu J Y, et al. Pitting corrosion of 13Cr steel in aerated brine completion fluids. Mater Corros, 2014, 65(11): 1096 doi: 10.1002/maco.201307489 [7] Liu Y, Xu L N, Lu M X, et al. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt. Appl Surf Sci, 2014, 314: 768 doi: 10.1016/j.apsusc.2014.07.067 [8] Yin Z F, Wang X Z, Liu L, et al. Characterization of corrosion product layers from CO2 corrosion of 13Cr stainless steel in simulated oilfield solution. J Mater Eng Perform, 2011, 20(7): 1330 doi: 10.1007/s11665-010-9769-z [9] Lü X H, Zhao G X, Fan Z H, et al. Effects of CI- concentration and CO2 partial pressure on pitting behavior of 13Cr stainless steel under high temperature and high pressure. Mater Prot, 2004, 37(6): 34 doi: 10.3969/j.issn.1001-1560.2004.06.013呂祥鴻, 趙國仙, 樊治海, 等. 高溫高壓下Cl-濃度、CO2分壓對13Cr不銹鋼點蝕的影響. 材料保護, 2004, 37(6): 34 doi: 10.3969/j.issn.1001-1560.2004.06.013 [10] Hou Z, Zhou Q J, Wang Q J, et al. Investigation on carbon dioxide corrosion performance of various 13Cr steels in simulated stratum water. J Chin Soc Corros Prot, 2012, 32(4): 300 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201204006.htm侯贊, 周慶軍, 王起江, 等. 13Cr系列不銹鋼在模擬井下介質中的CO2腐蝕研究. 中國腐蝕與防護學報, 2012, 32(4): 300 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201204006.htm [11] Zhao Y, Li X P, Zhang C, et al. Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in the extremely aggressive oilfield environment by using the rotating cage test. Corros Sci, 2018, 145: 307 doi: 10.1016/j.corsci.2018.10.011 [12] Lei X W, Wang H Y, Mao F X, et al. Electrochemical behaviour of martensitic stainless steel after immersion in a H2S-saturated solution. Corros Sci, 2018, 131: 164 doi: 10.1016/j.corsci.2017.10.015 [13] Chen Z Y, Li L J, Zhang G A, et al. Inhibition effect of propargyl alcohol on the stress corrosion cracking of super 13Cr steel in a completion fluid. Corros Sci, 2013, 69: 205 doi: 10.1016/j.corsci.2012.12.004 [14] ASTM International, United States. ASTM G1-03 Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. West Conshohocken: ASTM International, 2011 [15] NACE International, United States. NACE PR0775-05 Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations. Houston: ASTM International, 2005 [16] Si J J, Wu Y D, Wang T, et al. Composition-controlled active-passive transition and corrosion behavior of Fe-Cr(Mo)-Zr-B bulk amorphous steels. Appl Surf Sci, 2018, 445: 496 doi: 10.1016/j.apsusc.2018.03.186 [17] Moon J, Ha H Y, Park S J, et al. Effect of Mo and Cr additions on the microstructure, mechanical properties and pitting corrosion resistance of austenitic Fe-30Mn-10.5Al-1.1C lightweight steels. J Alloys Compd, 2019, 775: 1136 doi: 10.1016/j.jallcom.2018.10.253 [18] Guo F F, Dong G N, Dong L S. High temperature passive film on the surface of Co-Cr-Mo alloy and its tribological properties. Appl Surf Sci, 2014, 314: 777 doi: 10.1016/j.apsusc.2014.07.086 -