<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高溫高壓環境下不同濃度KBr溶液對13Cr不銹鋼的腐蝕行為影響

朱金陽 鄭子易 許立寧 路民旭

朱金陽, 鄭子易, 許立寧, 路民旭. 高溫高壓環境下不同濃度KBr溶液對13Cr不銹鋼的腐蝕行為影響[J]. 工程科學學報, 2019, 41(5): 625-632. doi: 10.13374/j.issn2095-9389.2019.05.009
引用本文: 朱金陽, 鄭子易, 許立寧, 路民旭. 高溫高壓環境下不同濃度KBr溶液對13Cr不銹鋼的腐蝕行為影響[J]. 工程科學學報, 2019, 41(5): 625-632. doi: 10.13374/j.issn2095-9389.2019.05.009
ZHU Jin-yang, ZHENG Zi-yi, XU Li-ning, LU Min-xu. Influence of KBr concentration on corrosion behaviors of 13Cr stainless steels under high temperature and high pressure[J]. Chinese Journal of Engineering, 2019, 41(5): 625-632. doi: 10.13374/j.issn2095-9389.2019.05.009
Citation: ZHU Jin-yang, ZHENG Zi-yi, XU Li-ning, LU Min-xu. Influence of KBr concentration on corrosion behaviors of 13Cr stainless steels under high temperature and high pressure[J]. Chinese Journal of Engineering, 2019, 41(5): 625-632. doi: 10.13374/j.issn2095-9389.2019.05.009

高溫高壓環境下不同濃度KBr溶液對13Cr不銹鋼的腐蝕行為影響

doi: 10.13374/j.issn2095-9389.2019.05.009
基金項目: 

國家自然科學基金資助項目 51871025

詳細信息
    通訊作者:

    朱金陽, E-mail: zhujinyang@ustb.edu.cn

  • 中圖分類號: TG174.2

Influence of KBr concentration on corrosion behaviors of 13Cr stainless steels under high temperature and high pressure

More Information
  • 摘要: 油氣工業中溴鹽完井液的使用極易導致油套管腐蝕失效的發生, 尤其是局部腐蝕風險.針對這一問題, 采用高溫高壓腐蝕模擬試驗、掃描電鏡觀察與分析、電化學測試等試驗研究方法, 研究了高溫高壓環境下不同濃度溴鹽溶液對普通13Cr和超級13Cr兩種典型油套管材腐蝕行為的影響.結果表明: 從平均腐蝕速率來看, 兩種13Cr管材在三種濃度溴鹽溶液中均表現出較好的耐蝕性能, 屬于輕度或中度腐蝕, 但從局部腐蝕速率來看, 兩種材料均達到嚴重或極嚴重腐蝕; 隨著溴鹽濃度的提高, 普通13Cr的自腐蝕電位和點蝕電位均明顯負移, 對應材料的平均腐蝕速率和局部腐蝕速率均明顯上升, 而超級13Cr僅點蝕電位明顯負移, 自腐蝕電位則相對穩定, 對應其平均腐蝕速率變化幅度較小, 局部腐蝕速率則明顯上升, 這說明相比普通13Cr, 超級13Cr對溴鹽溶液具有更強的整體耐受能力, 但局部腐蝕敏感性仍然較高; 激光共聚焦(LSCM)三維表征結果表明, 在高質量濃度溴鹽溶液(1.40 g·cm-3)中, 不論是普通13Cr還是超級13Cr都有明顯的點蝕傾向, 這主要與溶液中高濃度的侵蝕性陰離子Br-有關, 相比于普通13Cr, 超級13Cr的點蝕敏感性相對較低, 但其點蝕風險仍不可忽視.

     

  • 圖  1  高溫高壓腐蝕模擬試驗裝置

    Figure  1.  Autoclave used in corrosion simulation tests under high temperature and pressure

    圖  2  試驗所用的條形掛片試樣

    Figure  2.  Experimental sample used in corrosion simulation tests

    圖  3  普通13Cr和超級13Cr在不同濃度溴鹽溶液下腐蝕7 d后的腐蝕速率對比. (a) 平均腐蝕速率; (b) 最大局部腐蝕速率

    Figure  3.  Corrosion rates of plain and super 13Cr steels after seven days exposure in KBr solutions with different concentrations: (a) general corrosion rate; (b) maximum local corrosion rate

    圖  4  普通13Cr在不同質量濃度溴鹽溶液下腐蝕7 d后酸洗前(左)和酸洗后(右)的宏觀腐蝕形貌照片. (a, b) 1.01 g·cm-3; (c, d) 1.10 g·cm-3; (e, f) 1.40 g·cm-3

    Figure  4.  Macro-photographs of plain 13Cr steel before (left) and after (right) cleaning after seven days exposure in KBr solutions with different concentrations: (a, b) 1.01 g·cm-3; (c, d) 1.10 g·cm-3; (e, f) 1.40 g·cm-3

    圖  5  超級13Cr在不同質量濃度溴鹽溶液下腐蝕7 d后酸洗前(左)和酸洗后(右)的宏觀腐蝕形貌照片. (a, b) 1.01 g·cm-3; (c, d) 1.10 g·cm-3; (e, f) 1.40 g·cm-3

    Figure  5.  Macro-photographs of super 13Cr steel before (left) and after (right) cleaning after seven days exposure in KBr solutions with different concentrations: (a, b) 1.01 g·cm-3; (c, d) 1.10 g·cm-3; (e, f) 1.40 g·cm-3

    圖  6  普通13Cr在1.40 g·cm-3溴鹽溶液下腐蝕7 d后的表面微觀形貌及三維形貌照片. (a) 表面形貌; (b) 三維形貌; (c) 蝕坑截面尺寸

    Figure  6.  D and 3D images of plain 13Cr steel after seven days exposure in a KBr solution with a concentration of 1.40 g·cm-3: (a) surface morphology; (b) 3D topographic image; (c) depth profile of corrosion pit

    圖  7  普通13Cr在1.40 g·cm-3溴鹽溶液下腐蝕7 d后蝕坑能譜測試結果

    Figure  7.  EDS result of the corrosion product in the corrosion pit on plain 13Cr steel after seven days exposure in a KBr solution with concentration of 1.40 g·cm-3

    圖  8  超級13Cr在1.40 g·cm-3溴鹽溶液下腐蝕7 d后的表面微觀形貌及三維形貌照片. (a) 表面形貌; (b) 三維形貌; (c) 蝕坑截面尺寸

    Figure  8.  2D and 3D images of super 13Cr steel after seven days exposure in a KBr solution with concentration of 1.40 g·cm-3: (a) surface morphology; (b) 3D topographic image; (c) depth profile of corrosion pit

    圖  9  超級13Cr在1.40 g·cm-3溴鹽溶液下腐蝕7 d后蝕坑能譜測試結果

    Figure  9.  EDS result of the corrosion product in the corrosion pit on super 13Cr steel after seven days exposure in KBr solution with concentration of 1.40 g·cm-3

    圖  10  普通13Cr在不同濃度溴鹽溶液下腐蝕7 d后的截面微觀形貌照片. (a) 1.01 g·cm-3; (b) 1.10 g·cm-3; (c) 1.40 g·cm-3

    Figure  10.  Cross-sectional morphologies of plain 13Cr steel after seven days exposure in KBr solutions with different concentrations: (a) 1.01 g·cm-3; (b) 1.10 g·cm-3; (c) 1.40 g·cm-3

    圖  11  超級13Cr在不同濃度溴鹽溶液下腐蝕7 d后的截面微觀形貌照片. (a) 1.01 g·cm-3; (b) 1.10 g·cm-3; (c) 1.40 g·cm-3

    Figure  11.  Cross-sectional morphologies of super 13Cr steel after seven days exposure in KBr solutions with different concentrations: (a) 1.01 g·cm-3; (b) 1.10 g·cm-3; (c) 1.40 g·cm-3

    圖  12  材料在不同質量濃度溴鹽溶液下的動電位極化曲線對比. (a) 普通13Cr; (b) 超級13Cr

    Figure  12.  Potentiodynamic polarization curves in KBr solutions with different concentrations: (a) plain 13Cr; (b) super 13Cr

    圖  13  普通13Cr和超級13Cr在不同濃度溴鹽溶液下的點蝕電位對比

    Figure  13.  Pitting potential plots of plain and super 13Cr steels in KBr solutions with different concentrations

    表  1  實驗所用的兩種13Cr不銹鋼材質成分(質量分數)

    Table  1.   Main chemical composition of the two kinds of 13Cr steels

    材料 C Cr Ni Mo Si Mn P S V Fe
    普通13Cr 0.19 12.1 0.30 0.23 0.015 0.004 0.042 余量
    超級13Cr 0.03 13.2 5.12 2.11 0.35 0.39 0.016 余量
    下載: 導出CSV

    表  2  三種不同濃度的溴鹽溶液成分

    Table  2.   Chemical compositions of three test solutions with different concentrations

    溶液密度/(g·cm-3) 配置1 L溴鹽溶液
    KBr質量/g 去離子水體積/L
    1.01 10 1
    1.10 100 1
    1.40 400 1
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhang G C, Lin G F, Sun Y L, et al. Research on corrosion resistance of 13Cr stainless steel. Total Corros Control, 2011, 25(4): 16 doi: 10.3969/j.issn.1008-7818.2011.04.004

    張國超, 林冠發, 孫育祿, 等. 13Cr不銹鋼腐蝕性能的研究現狀與進展. 全面腐蝕控制, 2011, 25(4): 16 doi: 10.3969/j.issn.1008-7818.2011.04.004
    [2] Chu W Y, Wang Y B, Guan Y S, et al. Design of API C90 tubular steel. Acta Metall Sinica, 1998, 31(10): 1073 doi: 10.3321/j.issn:0412-1961.1998.10.012

    褚武揚, 王燕斌, 關永生, 等. 抗H2S石油套管鋼的設計. 金屬學報, 1998, 31(10): 1073 doi: 10.3321/j.issn:0412-1961.1998.10.012
    [3] Lü X H, Zhao G X, Wang Y, et al. SSC resistance of super 13Cr martensitic stainless steel. J Mater Eng, 2011(2): 17 doi: 10.3969/j.issn.1001-4381.2011.02.004

    呂祥鴻, 趙國仙, 王宇, 等. 超級13Cr馬氏體不銹鋼抗SSC性能研究. 材料工程, 2011(2): 17 doi: 10.3969/j.issn.1001-4381.2011.02.004
    [4] Chen Y, Bai Z Q. Compare of CO2 corrosion resistance of 13Cr and N80 steel under high temperature and high pressure. Chem Eng Oil Gas, 2007, 36(3): 239 doi: 10.3969/j.issn.1007-3426.2007.03.016

    陳堯, 白真權. 13Cr和N80鋼高溫高壓抗腐蝕性能比較. 石油與天然氣化工, 2007, 36(3): 239 doi: 10.3969/j.issn.1007-3426.2007.03.016
    [5] Cai L. The Research and Application of Environmentally Friendly Completion Fluid[Dissertation]. Daqing: Daqing Petroleum Institute, 2009

    蔡亮. 環保型完井液的研究與應用[學位論文]. 大慶: 大慶石油學院, 2009
    [6] Liu Y, Xu L N, Zhu J Y, et al. Pitting corrosion of 13Cr steel in aerated brine completion fluids. Mater Corros, 2014, 65(11): 1096 doi: 10.1002/maco.201307489
    [7] Liu Y, Xu L N, Lu M X, et al. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt. Appl Surf Sci, 2014, 314: 768 doi: 10.1016/j.apsusc.2014.07.067
    [8] Yin Z F, Wang X Z, Liu L, et al. Characterization of corrosion product layers from CO2 corrosion of 13Cr stainless steel in simulated oilfield solution. J Mater Eng Perform, 2011, 20(7): 1330 doi: 10.1007/s11665-010-9769-z
    [9] Lü X H, Zhao G X, Fan Z H, et al. Effects of CI- concentration and CO2 partial pressure on pitting behavior of 13Cr stainless steel under high temperature and high pressure. Mater Prot, 2004, 37(6): 34 doi: 10.3969/j.issn.1001-1560.2004.06.013

    呂祥鴻, 趙國仙, 樊治海, 等. 高溫高壓下Cl-濃度、CO2分壓對13Cr不銹鋼點蝕的影響. 材料保護, 2004, 37(6): 34 doi: 10.3969/j.issn.1001-1560.2004.06.013
    [10] Hou Z, Zhou Q J, Wang Q J, et al. Investigation on carbon dioxide corrosion performance of various 13Cr steels in simulated stratum water. J Chin Soc Corros Prot, 2012, 32(4): 300 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201204006.htm

    侯贊, 周慶軍, 王起江, 等. 13Cr系列不銹鋼在模擬井下介質中的CO2腐蝕研究. 中國腐蝕與防護學報, 2012, 32(4): 300 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201204006.htm
    [11] Zhao Y, Li X P, Zhang C, et al. Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in the extremely aggressive oilfield environment by using the rotating cage test. Corros Sci, 2018, 145: 307 doi: 10.1016/j.corsci.2018.10.011
    [12] Lei X W, Wang H Y, Mao F X, et al. Electrochemical behaviour of martensitic stainless steel after immersion in a H2S-saturated solution. Corros Sci, 2018, 131: 164 doi: 10.1016/j.corsci.2017.10.015
    [13] Chen Z Y, Li L J, Zhang G A, et al. Inhibition effect of propargyl alcohol on the stress corrosion cracking of super 13Cr steel in a completion fluid. Corros Sci, 2013, 69: 205 doi: 10.1016/j.corsci.2012.12.004
    [14] ASTM International, United States. ASTM G1-03 Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. West Conshohocken: ASTM International, 2011
    [15] NACE International, United States. NACE PR0775-05 Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations. Houston: ASTM International, 2005
    [16] Si J J, Wu Y D, Wang T, et al. Composition-controlled active-passive transition and corrosion behavior of Fe-Cr(Mo)-Zr-B bulk amorphous steels. Appl Surf Sci, 2018, 445: 496 doi: 10.1016/j.apsusc.2018.03.186
    [17] Moon J, Ha H Y, Park S J, et al. Effect of Mo and Cr additions on the microstructure, mechanical properties and pitting corrosion resistance of austenitic Fe-30Mn-10.5Al-1.1C lightweight steels. J Alloys Compd, 2019, 775: 1136 doi: 10.1016/j.jallcom.2018.10.253
    [18] Guo F F, Dong G N, Dong L S. High temperature passive film on the surface of Co-Cr-Mo alloy and its tribological properties. Appl Surf Sci, 2014, 314: 777 doi: 10.1016/j.apsusc.2014.07.086
  • 加載中
圖(13) / 表(2)
計量
  • 文章訪問數:  998
  • HTML全文瀏覽量:  466
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-12-24
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回