-
摘要: 采用電化學測試手段(開路電位、交流阻抗譜及動電位極化曲線測試), 結合接觸角測試及體視顯微鏡微觀形貌觀察探究在80 g·L-1 NaCl溶液中拉應力對L80-13Cr馬氏體不銹鋼鈍化膜溶解與再修復機制的影響.結果表明, 拉應力大小與L80-13Cr的鈍化特性存在正相關關系.隨著外加拉應力的增大, L80-13Cr馬氏體不銹鋼的開路電位負移, 電子轉移電阻減小, 線性極化電阻減小, 反應速率隨著拉應力的增大而增大.而L80-13Cr馬氏體不銹鋼在高電位下再鈍化形成的鈍化區會縮短, 自腐蝕電位降低, 維鈍電流密度增加.接觸角測試和體視顯微鏡微觀形貌觀察發現, 拉應力使得表面接觸角減小, 不銹鋼表面容易發生點蝕.外加拉應力使得L80-13Cr馬氏體不銹鋼的表面能增加, 促進鈍化膜的溶解, 并且抑制鈍化膜的再生, 導致材料耐蝕性降低.Abstract: Tubes in deep wells are subjected to the mixed effects of the environment and stress and thus suffer many failures. Therefore, studying the corrosion of materials under stress deformation is necessary. This paper aims to investigate the effect of applied tensile stress on the dissolution of passive film and the repair mechanism of L80-13Cr martensitic stainless steel in solution of 80 g·L-1 sodium chloride. Electrochemical tests were employed for measurements, where the main test measurements include open circuit potential (OCP), electrochemical impedance spectra (EIS), and potentiodynamic polarization tests. Contact angle measurement was combined with microscopic morphology analysis (Zoom stereo microscope) to investigate the surface activity. The test results show that there is the positive relation between applied tensile stress and the passivation characteristic of L80-13Cr martensitic stainless steel. Increase in the applied tensile stress negatively shifts the OCP value of L80-13Cr martensitic stainless steel, decreases the electron transfer resistance (Rt) and polarization resistance (Rp), and increases the rate of reaction; however, the passivation region significantly reduces, the passivation current density (Ecorr) increases, and the self-corrosion current density decreases, which forms at a high potential. The results of contact angle test and microscopic morphology analysis show that the applied tensile stress reduces the surface contact angle and promotes the pitting of L80-13Cr martensitic stainless steel. Applied tensile stress can increase the surface energy of L80-13Cr martensitic stainless steel, promote the dissolution of the passivation film, and inhibit the regeneration of the passivation film; thus, it can deteriorate the corrosion resistance of materials.
-
Key words:
- 13Cr stainless steel /
- tensile stress /
- passivation characteristic /
- surface activity
-
表 1 試驗材料化學成分(質量分數)
Table 1. Chemical composition of the experiment material ?
% C Cr Mn Ni Si Cu Mo P S Fe 0.2 12.87 0.5 0.12 0.29 0.012 < 0.1 0.014 0.0026 余量 表 2 阻抗圖譜參數擬合結果
Table 2. Parameters of EIS method
拉應力水平 Rs/(Ω·cm2) Qdl/(Ω-1·cm-2·s-w) 參數,w Rt/(Ω·cm2) 0%σs 5.43 3.5×10-4 0.904 1947 70%σs 11.89 3.9×10-4 0.860 925 110%σs 3.10 4.6×10-4 0.919 643 259luxu-164 -
參考文獻
[1] Zhao Y F, Wang J L, Zuo Y, et al. Research development of corrosion of steels in CO2/H2S-containing media in oil & gas fields. Corros Prot Petrochem Ind, 2010, 27(1): 1 doi: 10.3969/j.issn.1007-015X.2010.01.001趙永峰, 王吉連, 左禹, 等. 在含CO2/H2S介質中油氣田用鋼的腐蝕研究進展. 石油化工腐蝕與防護, 2010, 27(1): 1 doi: 10.3969/j.issn.1007-015X.2010.01.001 [2] Abelev E, Sellberg J, Ramanarayanan T A, et al. Effect of H2S on Fe corrosion in CO2-saturated brine. J Mater Sci, 2009, 44(22): 6167 doi: 10.1007/s10853-009-3854-4 [3] Li W F, Zhou Y J, Xue Y. Corrosion behavior of 110S tube steel in environments of high H2S and CO2 content. J Iron Steel Res Int, 2012, 19(12): 59 doi: 10.1016/S1006-706X(13)60033-3 [4] Ma H Y, Cheng X L, Li G Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions. Corros Sci, 2000, 42(10): 1669 doi: 10.1016/S0010-938X(00)00003-2 [5] Kimura M, Miyata Y, Sakata K, et al. Corrosion resistance of martensitic stainless steel OCTG in high temperature and high CO2 environment // Proceedings of the Corrosion 2004. New Orleans, 2004: 04118 [6] 古特曼З М. 金屬力學化學與腐蝕防護. 北京: 科學出版社, 1989 [7] Despic A R, Raicheff R G, Bockris J O M. Mechanism of the acceleration of the electronic dissolution of metals during yielding under stress. J Chem Phys, 1968, 49(2): 926 doi: 10.1063/1.1670162 [8] Sun J B, Liu W, Lu M X. Electrochemical corrosion behavior of 16MnR steel with plastic strain in CO2 environment. J Mater Eng, 2009(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200901015.htm孫建波, 柳偉, 路民旭. 塑性變形條件下16MnR鋼的CO2腐蝕電化學行為. 材料工程, 2009(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200901015.htm [9] Kim K M, Park J H, Kim H S, et al. Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuelcells. Int J Hydrogen Energy, 2012, 37(10): 8459 doi: 10.1016/j.ijhydene.2012.02.127 [10] Jafari E. Corrosion behaviors of two types of commercial stainless steel after plastic deformation. J Mater Sci Technol, 2010, 26(9): 833 doi: 10.1016/S1005-0302(10)60133-8 [11] Lu B T, Luo J L, Norton P R, et al. Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH. Acta Mater, 2009, 57(1): 41 doi: 10.1016/j.actamat.2008.08.035 [12] Li M C, Cheng Y F. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy. Electrochim Acta, 2008, 53(6): 2831 doi: 10.1016/j.electacta.2007.10.077 [13] Cao C N. Principles of Electrochemistry of Corrosion. 3rd Ed. Beijing: Chemical Industry Press, 2008曹楚南. 腐蝕電化學原理. 3版. 北京: 化學工業出版社, 2008 [14] Ren R K, Zhang S, Pang X L, et al. A novel observation of the interaction between the macroelastic stress and electrochemical corrosion of low carbon steel in 3.5wt% NaCl solution. Electrochim Acta, 2012, 85: 283 doi: 10.1016/j.electacta.2012.08.079 [15] Huang Y H. Mechano-chemical Effect in Chloride Corrosion of 304 Stainless Steel[Dissertation]. Shanghai: East China University of Science and Technology, 2011黃毓暉. 304不銹鋼氯離子腐蝕的力-化學行為研究[學位論文]. 上海: 華東理工大學, 2011 [16] Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: back stress and effective stress. Acta Mater, 1999, 47(13): 3617 doi: 10.1016/S1359-6454(99)00222-0 [17] Lu B T, Chen Z K, Luo J L, et al. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. Electrochim Acta, 2005, 50(6): 1391 doi: 10.1016/j.electacta.2004.08.036 [18] Sahal M, Creus J, Sabot R, et al. The effects of dislocation patterns on the dissolution process of polycrystalline nickel. Acta Mater, 2006, 54(8): 2157 doi: 10.1016/j.actamat.2006.01.006 [19] Lin C J, Feng Z D, Lin F L, et al. Electrochemical behaviors of the loaded stainless steel in dilute thiosulphate solution. Electrochem, 1995, 1(4): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX504.010.htm林昌健, 馮祖德, 林福齡, 等. 18/8型不銹鋼在受力形變條件下腐蝕電化學行為的研究. 電化學, 1995, 1(4): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX504.010.htm -