<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

外加拉應力對13Cr馬氏體不銹鋼的腐蝕行為影響

張慧娟 趙密峰 張雷 馬磊 王亞文 岳小琪 路民旭

張慧娟, 趙密峰, 張雷, 馬磊, 王亞文, 岳小琪, 路民旭. 外加拉應力對13Cr馬氏體不銹鋼的腐蝕行為影響[J]. 工程科學學報, 2019, 41(5): 618-624. doi: 10.13374/j.issn2095-9389.2019.05.008
引用本文: 張慧娟, 趙密峰, 張雷, 馬磊, 王亞文, 岳小琪, 路民旭. 外加拉應力對13Cr馬氏體不銹鋼的腐蝕行為影響[J]. 工程科學學報, 2019, 41(5): 618-624. doi: 10.13374/j.issn2095-9389.2019.05.008
ZHANG Hui-juan, ZHAO Mi-feng, ZHANG Lei, MA Lei, WANG Ya-wen, YUE Xiao-qi, LU Min-xu. Effect of tensile stress on corrosion behavior of 13Cr martensitic stainless steel[J]. Chinese Journal of Engineering, 2019, 41(5): 618-624. doi: 10.13374/j.issn2095-9389.2019.05.008
Citation: ZHANG Hui-juan, ZHAO Mi-feng, ZHANG Lei, MA Lei, WANG Ya-wen, YUE Xiao-qi, LU Min-xu. Effect of tensile stress on corrosion behavior of 13Cr martensitic stainless steel[J]. Chinese Journal of Engineering, 2019, 41(5): 618-624. doi: 10.13374/j.issn2095-9389.2019.05.008

外加拉應力對13Cr馬氏體不銹鋼的腐蝕行為影響

doi: 10.13374/j.issn2095-9389.2019.05.008
基金項目: 

國家自然科學基金面上資助項目 51371034

國家科技重大專項資助項目 2016ZX05028-004-005

詳細信息
    通訊作者:

    張雷, E-mail: Zhanglei@ustb.edu.cn

  • 中圖分類號: TG142.71

Effect of tensile stress on corrosion behavior of 13Cr martensitic stainless steel

More Information
  • 摘要: 采用電化學測試手段(開路電位、交流阻抗譜及動電位極化曲線測試), 結合接觸角測試及體視顯微鏡微觀形貌觀察探究在80 g·L-1 NaCl溶液中拉應力對L80-13Cr馬氏體不銹鋼鈍化膜溶解與再修復機制的影響.結果表明, 拉應力大小與L80-13Cr的鈍化特性存在正相關關系.隨著外加拉應力的增大, L80-13Cr馬氏體不銹鋼的開路電位負移, 電子轉移電阻減小, 線性極化電阻減小, 反應速率隨著拉應力的增大而增大.而L80-13Cr馬氏體不銹鋼在高電位下再鈍化形成的鈍化區會縮短, 自腐蝕電位降低, 維鈍電流密度增加.接觸角測試和體視顯微鏡微觀形貌觀察發現, 拉應力使得表面接觸角減小, 不銹鋼表面容易發生點蝕.外加拉應力使得L80-13Cr馬氏體不銹鋼的表面能增加, 促進鈍化膜的溶解, 并且抑制鈍化膜的再生, 導致材料耐蝕性降低.

     

  • 圖  1  實驗用L80-13Cr馬氏體不銹鋼金相組織

    Figure  1.  Metallographic image of the L80-13Cr stainless steel

    圖  2  實驗試樣示意圖(單位:mm)

    Figure  2.  Schematic of the test specimen (unit: mm)

    圖  3  恒載荷實驗裝置示意圖

    Figure  3.  Schematic of the constant-load experiment

    圖  4  不同拉應力下L80-13Cr不銹鋼的開路電位

    Figure  4.  OCP value of L80-13Cr stainless steel under various stresses

    圖  5  不同應力下L80-13Cr不銹鋼的阻抗Nyquist圖

    Figure  5.  Nyquist diagram of L80-13Cr stainless steel under various stresses

    圖  6  阻抗對應等效電路模型

    Figure  6.  Equivalent circuit used in the modeling of the EIS results

    圖  7  不同拉應力下L80-13Cr不銹鋼的動電位極化曲線

    Figure  7.  Potentiodynamic polarization curves of L80-13Cr stainless steel under various stresses

    圖  8  不同拉應力下L80-13Cr不銹鋼自腐蝕電位及線性極化電阻

    Figure  8.  Ecorr and Rp of L80-13Cr stainless steel under various stresses

    圖  9  不同拉應力作用下試樣表面接觸角大小測試. (a) 0%σs; (b) 70%σs; (c) 110%σs

    Figure  9.  Contact angles of specimens under various stresses: (a) 0%σs; (b) 70%σs; (c) 110%σs

    圖  10  不同拉應力下試樣極化到0.3 V時的表面腐蝕形貌. (a) 0%σs; (b) 70%σs; (c) 110%σs

    Figure  10.  Surface morphology of specimen after potentiodynamic polarization at 0.3 V above the open circuit potential under various stresses: (a) 0%σs; (b) 70%σs; (c) 110%σs

    表  1  試驗材料化學成分(質量分數)

    Table  1.   Chemical composition of the experiment material ?%

    C Cr Mn Ni Si Cu Mo P S Fe
    0.2 12.87 0.5 0.12 0.29 0.012 < 0.1 0.014 0.0026 余量
    下載: 導出CSV

    表  2  阻抗圖譜參數擬合結果

    Table  2.   Parameters of EIS method

    拉應力水平 Rs/(Ω·cm2) Qdl/(Ω-1·cm-2·s-w) 參數,w Rt/(Ω·cm2)
    0%σs 5.43 3.5×10-4 0.904 1947
    70%σs 11.89 3.9×10-4 0.860 925
    110%σs 3.10 4.6×10-4 0.919 643
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhao Y F, Wang J L, Zuo Y, et al. Research development of corrosion of steels in CO2/H2S-containing media in oil & gas fields. Corros Prot Petrochem Ind, 2010, 27(1): 1 doi: 10.3969/j.issn.1007-015X.2010.01.001

    趙永峰, 王吉連, 左禹, 等. 在含CO2/H2S介質中油氣田用鋼的腐蝕研究進展. 石油化工腐蝕與防護, 2010, 27(1): 1 doi: 10.3969/j.issn.1007-015X.2010.01.001
    [2] Abelev E, Sellberg J, Ramanarayanan T A, et al. Effect of H2S on Fe corrosion in CO2-saturated brine. J Mater Sci, 2009, 44(22): 6167 doi: 10.1007/s10853-009-3854-4
    [3] Li W F, Zhou Y J, Xue Y. Corrosion behavior of 110S tube steel in environments of high H2S and CO2 content. J Iron Steel Res Int, 2012, 19(12): 59 doi: 10.1016/S1006-706X(13)60033-3
    [4] Ma H Y, Cheng X L, Li G Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions. Corros Sci, 2000, 42(10): 1669 doi: 10.1016/S0010-938X(00)00003-2
    [5] Kimura M, Miyata Y, Sakata K, et al. Corrosion resistance of martensitic stainless steel OCTG in high temperature and high CO2 environment // Proceedings of the Corrosion 2004. New Orleans, 2004: 04118
    [6] 古特曼З М. 金屬力學化學與腐蝕防護. 北京: 科學出版社, 1989
    [7] Despic A R, Raicheff R G, Bockris J O M. Mechanism of the acceleration of the electronic dissolution of metals during yielding under stress. J Chem Phys, 1968, 49(2): 926 doi: 10.1063/1.1670162
    [8] Sun J B, Liu W, Lu M X. Electrochemical corrosion behavior of 16MnR steel with plastic strain in CO2 environment. J Mater Eng, 2009(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200901015.htm

    孫建波, 柳偉, 路民旭. 塑性變形條件下16MnR鋼的CO2腐蝕電化學行為. 材料工程, 2009(1): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200901015.htm
    [9] Kim K M, Park J H, Kim H S, et al. Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuelcells. Int J Hydrogen Energy, 2012, 37(10): 8459 doi: 10.1016/j.ijhydene.2012.02.127
    [10] Jafari E. Corrosion behaviors of two types of commercial stainless steel after plastic deformation. J Mater Sci Technol, 2010, 26(9): 833 doi: 10.1016/S1005-0302(10)60133-8
    [11] Lu B T, Luo J L, Norton P R, et al. Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH. Acta Mater, 2009, 57(1): 41 doi: 10.1016/j.actamat.2008.08.035
    [12] Li M C, Cheng Y F. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy. Electrochim Acta, 2008, 53(6): 2831 doi: 10.1016/j.electacta.2007.10.077
    [13] Cao C N. Principles of Electrochemistry of Corrosion. 3rd Ed. Beijing: Chemical Industry Press, 2008

    曹楚南. 腐蝕電化學原理. 3版. 北京: 化學工業出版社, 2008
    [14] Ren R K, Zhang S, Pang X L, et al. A novel observation of the interaction between the macroelastic stress and electrochemical corrosion of low carbon steel in 3.5wt% NaCl solution. Electrochim Acta, 2012, 85: 283 doi: 10.1016/j.electacta.2012.08.079
    [15] Huang Y H. Mechano-chemical Effect in Chloride Corrosion of 304 Stainless Steel[Dissertation]. Shanghai: East China University of Science and Technology, 2011

    黃毓暉. 304不銹鋼氯離子腐蝕的力-化學行為研究[學位論文]. 上海: 華東理工大學, 2011
    [16] Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: back stress and effective stress. Acta Mater, 1999, 47(13): 3617 doi: 10.1016/S1359-6454(99)00222-0
    [17] Lu B T, Chen Z K, Luo J L, et al. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. Electrochim Acta, 2005, 50(6): 1391 doi: 10.1016/j.electacta.2004.08.036
    [18] Sahal M, Creus J, Sabot R, et al. The effects of dislocation patterns on the dissolution process of polycrystalline nickel. Acta Mater, 2006, 54(8): 2157 doi: 10.1016/j.actamat.2006.01.006
    [19] Lin C J, Feng Z D, Lin F L, et al. Electrochemical behaviors of the loaded stainless steel in dilute thiosulphate solution. Electrochem, 1995, 1(4): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX504.010.htm

    林昌健, 馮祖德, 林福齡, 等. 18/8型不銹鋼在受力形變條件下腐蝕電化學行為的研究. 電化學, 1995, 1(4): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX504.010.htm
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  1578
  • HTML全文瀏覽量:  441
  • PDF下載量:  34
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-05-02
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回