<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

低溫取向硅鋼常化工藝和滲氮工藝對組織、織構和磁性能的影響

李霞 楊平 賈志偉 張海利

李霞, 楊平, 賈志偉, 張海利. 低溫取向硅鋼常化工藝和滲氮工藝對組織、織構和磁性能的影響[J]. 工程科學學報, 2019, 41(5): 610-617. doi: 10.13374/j.issn2095-9389.2019.05.007
引用本文: 李霞, 楊平, 賈志偉, 張海利. 低溫取向硅鋼常化工藝和滲氮工藝對組織、織構和磁性能的影響[J]. 工程科學學報, 2019, 41(5): 610-617. doi: 10.13374/j.issn2095-9389.2019.05.007
LI Xia, YANG Ping, JIA Zhi-wei, ZHANG Hai-li. Effects of normalizing process and nitriding process on the microstructure, texture, and magnetic properties in low-temperature grain-oriented silicon steel[J]. Chinese Journal of Engineering, 2019, 41(5): 610-617. doi: 10.13374/j.issn2095-9389.2019.05.007
Citation: LI Xia, YANG Ping, JIA Zhi-wei, ZHANG Hai-li. Effects of normalizing process and nitriding process on the microstructure, texture, and magnetic properties in low-temperature grain-oriented silicon steel[J]. Chinese Journal of Engineering, 2019, 41(5): 610-617. doi: 10.13374/j.issn2095-9389.2019.05.007

低溫取向硅鋼常化工藝和滲氮工藝對組織、織構和磁性能的影響

doi: 10.13374/j.issn2095-9389.2019.05.007
詳細信息
    通訊作者:

    楊平, E-mail: yangp@mater.ustb.edu.cn

  • 中圖分類號: TG142.71

Effects of normalizing process and nitriding process on the microstructure, texture, and magnetic properties in low-temperature grain-oriented silicon steel

More Information
  • 摘要: 利用電子背散射衍射技術(EBSD)、掃描電鏡(SEM)分析了低溫取向硅鋼常化工藝、滲氮工藝對常化組織、再結晶組織與抑制劑的影響, 對比研究了常化冷卻速率、滲氮溫度和滲氮量對再結晶組織、織構和磁性能的影響規律.結果表明, 常化冷卻速率越快, 一次再結晶晶粒尺寸越小.常化冷卻速率較慢時, 高溫滲氮的樣品一次再結晶晶粒尺寸偏大, 使二次再結晶驅動力降低, 二次再結晶溫度提高, 且滲氮量低, 追加抑制劑不足, 最終二次再結晶不完善.高溫滲氮與低溫滲氮導致脫碳板中抑制劑尺寸不同, 高溫滲氮表層抑制劑與次表層抑制劑尺寸基本無差異, 低溫滲氮表層抑制劑尺寸比次表層抑制劑尺寸大.低溫滲氮且滲氮量低的樣品雖然二次再結晶較完善, 但由于其常化溫度低、常化冷卻速率快, 一次再結晶晶粒尺寸小, 二次再結晶開始溫度稍早, 黃銅取向晶粒出現, 最終磁性差.滲氮量較高的高溫滲氮和低溫滲氮樣品雖都能基本完成二次再結晶, 但磁性存在差異, 磁性差的原因是高溫滲氮樣品的最終退火板中出現較多的偏{210} < 001>取向晶粒.

     

  • 圖  1  常化板組織. (a) A1; (b) B1; (c) C1; (d) D1; (e) E1

    Figure  1.  Microstructures of normalization-annealed samples: (a) A1; (b) B1; (c) C1; (d) D1; (e) E1

    圖  2  晶粒尺寸分布

    Figure  2.  Grain size distribution

    圖  3  不同樣品一次再結晶取向成像及相應的ODF圖. (a), (d), (g), (j), (m)分別為ABCDE樣品的一次再結晶取向成像; (b, c)(e, f)(h, i)(k, l)(n, o)分別為ABCDE樣品的ODF圖

    Figure  3.  Orientation maps and ODFs of different samples after primary recrystallization: (a), (d), (g), (j), (m) orientation maps of ABCDE; (b), (e), (h), (k), (n): ODF of ABCDE; (c), (f), (i), (l), (o): ODF of ABCDE

    圖  4  不同樣品高溫退火后的組織. (a) A; (b) B; (c) C; (d) D; (e) E

    Figure  4.  Secondary recrystallization structures of different samples: (a) A; (b) B; (c) C; (d) D; (e) E

    圖  5  A樣品二次再結晶晶粒取向成像圖(a)與{100}極圖(b, c)

    Figure  5.  EBSD orientation images (a) and {100} pole figures (b, c) of sample A

    圖  6  高溫退火中斷試樣宏觀組織. A樣品:(a) 950 ℃; (b) 1000 ℃; (c) 1050 ℃; (d) 1100 ℃; E樣品:(e) 950 ℃; (f) 1000 ℃; (g) 1050 ℃; (h) 1100 ℃; D樣品:(i) 950 ℃; (j) 1000 ℃; (k) 1050 ℃; (l) 1100 ℃

    Figure  6.  Macrostructure of the samples after interrupted high temperature annealing. Sample A: (a) 950 ℃; (b) 1000 ℃; (c) 1050 ℃; (d) 1100 ℃; sample E: (e) 950 ℃; (f) 1000 ℃; (g) 1050 ℃; (h) 1100 ℃; sample D: (i) 950 ℃; (j) 1000 ℃; (k) 1050 ℃; (l) 1100 ℃

    圖  7  A樣品二次再結晶晶粒取向成像(a)與{100}極圖(b)(c)

    Figure  7.  EBSD orientation images (a) and {100} pole figures (b)(c) of sample B

    表  1  低溫取向硅鋼工藝參數、滲氮信息及成品磁性能

    Table  1.   Process parameters, nitriding information, and magnetic properties of grain-oriented silicon steel

    常化板編號 脫碳板編號 常化溫度 常化冷速 滲氮溫度/℃ 氮質量分數/10-6 磁感,B8/T
    A1 A 低溫(-20 ℃) 快冷(+5 ℃·s-1) 750~800 203 1.665
    B1 B 中溫 正常冷速 850~900 242 1.776
    C1 C 中溫 正常冷速 750~800 225 1.865
    D1 D 中溫 正常冷速 750~800 240 1.834
    E1 E 中溫 慢冷(-5 ℃·s-1) 850~900 208 1.652
    下載: 導出CSV

    表  2  不同樣品一次再結晶織構和晶粒平均尺寸

    Table  2.   Primary recrystallization textures and average grain size of different samples

    樣品編號 晶粒平均尺寸/μm 織構面積占比/%
    {110}<001> {111}<112> {114}<481> {100}<012>
    A 15.9 0.383 11.50 27.2 12.4
    B 18.5 1.320 12.90 28.1 13.1
    C 21.7 2.410 10.90 19.4 11.4
    D 20.3 1.060 7.74 30.5 16.6
    E 23.7 0.244 11.00 28.4 16.6
    下載: 導出CSV

    表  3  脫碳板中抑制劑平均尺寸及數量

    Table  3.   Average size and quantity of inhibitors in the decarbonized sheets

    樣品編號(滲氮溫度) 表層抑制劑 次表層抑制劑 表層與次表層抑制劑尺寸之差/nm
    尺寸/nm 個數 面密度/μm-2 尺寸/nm 個數 面密度/μm-2
    A(低溫) 45 925 2.49 29.7 842 2.27 15.3
    B(高溫) 52.2 849 2.29 47.6 343 0.92 4.6
    C(低溫) 60.4 697 1.88 39.9 461 1.24 20.3
    D(低溫) 54.5 845 2.28 38.8 384 1.03 15.7
    E(高溫) 69.2 319 0.86 66.9 216 0.58 2.3
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Ling C, Xiang L, Qiu S T, et al. Effects of normalizing annealing on grain-oriented silicon steel. J Iron Steel Res Int, 2014, 21(7): 690 doi: 10.1016/S1006-706X(14)60107-2
    [2] Li H, Feng Y L, Song M, et al. Effect of normalizing cooling process on microstructure and precipitates in low-temperature silicon steel. Trans Nonferrous Met Soc China, 2014, 24(3): 770 doi: 10.1016/S1003-6326(14)63124-1
    [3] Wang R P, Li S D, Fang Z M, et al. Microstructure and precipitate of low temperature hot rolled HGO silicon steel plate by normalizing. Heat Treat Met, 2009, 34(6): 9 doi: 10.3969/j.issn.1673-4971.2009.06.003

    王若平, 黎世德, 方澤民, 等. 低溫熱軋高磁感取向硅鋼板常化組織及析出相研究. 金屬熱處理, 2009, 34(6): 9 doi: 10.3969/j.issn.1673-4971.2009.06.003
    [4] Shimizu Y, Ito Y, Iida Y. Formation of the Goss orientation near the surface of 3 pct silicon steel during hot rolling. Metall Trans A, 1986, 17(8): 1323 doi: 10.1007/BF02650113
    [5] Liao C C, Hou C K. Effect of nitriding time on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel. J Magn Magn Mater, 2010, 322(4): 434 doi: 10.1016/j.jmmm.2009.09.072
    [6] Wang R, Yang P, Liu G T. Effect of nitriding temperature on inhibitor precipitation and the annealed microstructure of grain-oriented silicon steel produced by acquired inhibitor method. Chin J Stereology Image Anal, 2016, 21(3): 272 https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201603004.htm

    王瑞, 楊平, 劉恭濤. 滲氮溫度對獲得抑制劑取向硅鋼粒子析出及退火組織的影響. 中國體視學與圖像分析, 2016, 21(3): 272 https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201603004.htm
    [7] Ushigami Y, Kurosawa F, Masui H, et al. Precipitation behaviors of injected nitride inhibitors during secondary recrystallization annealing in grain oriented silicon steel. Mater Sci Forum, 1996, 204-206: 593 doi: 10.4028/www.scientific.net/MSF.204-206.593
    [8] Wu Z W, Li J, Zhao Y, et al. Rules of precipitate transformation for grain-oriented silicon steel producted by acquired inhibitor method. J Iron Steel Res, 2011, 23(12): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201112012.htm

    吳忠旺, 李軍, 趙宇, 等. 后天抑制劑獲得法制取向硅鋼析出物的轉化規律. 鋼鐵研究學報, 2011, 23(12): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201112012.htm
    [9] Wu Z W, Li J, Zhao Y, et al. Evolution of inhibitor in the annealing process at high temperature of low temperature hot roll and nitriding grain-oriented silicon steel. Trans Mater Heat Treat, 2011, 32(11): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201111020.htm

    吳忠旺, 趙宇, 李軍, 等. 低溫取向硅鋼高溫退火抑制劑的演化. 材料熱處理學報, 2011, 32(11): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201111020.htm
    [10] Song H J, Yang P, Mao W M. Nitrogen behavior during nitriding treatment of electrical steel. Heat Treat Met, 2012, 37(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201201009.htm

    宋惠軍, 楊平, 毛衛民. 電工鋼滲氮的氮行為. 金屬熱處理, 2012, 37(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201201009.htm
    [11] Imamura T, Shingaki Y, Hayakawa Y. Effect of cold rolling reduction rate on secondary recrystallized texture in 3 pct Si-Fe steel. Metall Mater Trans A, 2013, 44(4): 1785 doi: 10.1007/s11661-012-1525-6
    [12] Homma H, Hutchinson B. Orientation dependence of secondary recrystallization in silicon-iron. Acta Mater, 2003, 51(13): 3795 doi: 10.1016/S1359-6454(03)00193-9
    [13] Kumano T, Haratani T, Fujii N. Effect of nitriding on grain oriented silicon steel bearing aluminum. ISIJ Int, 2005, 45(1): 95 doi: 10.2355/isijinternational.45.95
    [14] Kumano T, Ohata Y, Fujii N, et al. Effect of nitriding on grain oriented silicon steel bearing aluminum (the second study). J Magn Magn Mater, 2006, 304(2): e602 doi: 10.1016/j.jmmm.2006.02.188
    [15] Yoshitomi Y, Ushigami Y, Takahashi N, et al. Prediction method of sharpness of {110} < 001 > secondary recrystallization texture of Fe-3% Si alloy. Mater Sci Forum, 1996, 204-206: 629 doi: 10.4028/www.scientific.net/MSF.204-206.629
    [16] Kim J K, Woo J S, Chang S K. Influence of annealing before cold rolling on the evolution of sharp Goss texture in Fe-3%Si alloy. J Magn Magn Mater, 2000, 215-216: 162 doi: 10.1016/S0304-8853(00)00103-7
    [17] Harase J, Kurosawa F, Ushigami Y, et al. Change of magnetic induction of nitrided Fe-3%Si alloy during secondary recrystallization annealing. J Jpn Inst Met, 1995, 59(9): 917 doi: 10.2320/jinstmet1952.59.9_917
    [18] Ushigami Y, Nakayama T, Suga Y, et al. Influence of secondary recrystallization temperature on secondary recrystallization texture in Fe-3%Si alloy. Mater Sci Forum, 1996, 204-206: 605 doi: 10.4028/www.scientific.net/MSF.204-206.605
    [19] Yan M Q, Qian H, Yang P, et al. Behaviors of brass texture and its influence on Goss texture in grain oriented electrical steels. Acta Metall Sin, 2012, 48(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201201004.htm

    顏孟奇, 錢浩, 楊平, 等. 電工鋼中黃銅織構行為及其對Goss織構的影響. 金屬學報, 2012, 48(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201201004.htm
    [20] Yoshitomi Y, Ushigami Y, Harase J, et al. Coincidence grain boundary and role of primary recrystallized grain growth on secondary recrystallization texture evolution in Fe-3% Si alloy. Acta Metall Mater, 1994, 42(8): 2593 doi: 10.1016/0956-7151(94)90200-3
    [21] Gangli P, Szpunar J A. The use of Σ operators in investigating secondary recrystallization of 3% silicon steel. Mater Sci Forum, 1994, 157-162: 953 doi: 10.4028/www.scientific.net/MSF.157-162.953
    [22] Wang Y, Xu Y B, Zhang Y X, et al. On abnormal growth of {210}<001>grain in grain-oriented silicon steel. Mater Res Bull, 2015, 69: 138 doi: 10.1016/j.materresbull.2014.12.022
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  810
  • HTML全文瀏覽量:  394
  • PDF下載量:  31
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-05-23
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回