Effects of normalizing process and nitriding process on the microstructure, texture, and magnetic properties in low-temperature grain-oriented silicon steel
-
摘要: 利用電子背散射衍射技術(EBSD)、掃描電鏡(SEM)分析了低溫取向硅鋼常化工藝、滲氮工藝對常化組織、再結晶組織與抑制劑的影響, 對比研究了常化冷卻速率、滲氮溫度和滲氮量對再結晶組織、織構和磁性能的影響規律.結果表明, 常化冷卻速率越快, 一次再結晶晶粒尺寸越小.常化冷卻速率較慢時, 高溫滲氮的樣品一次再結晶晶粒尺寸偏大, 使二次再結晶驅動力降低, 二次再結晶溫度提高, 且滲氮量低, 追加抑制劑不足, 最終二次再結晶不完善.高溫滲氮與低溫滲氮導致脫碳板中抑制劑尺寸不同, 高溫滲氮表層抑制劑與次表層抑制劑尺寸基本無差異, 低溫滲氮表層抑制劑尺寸比次表層抑制劑尺寸大.低溫滲氮且滲氮量低的樣品雖然二次再結晶較完善, 但由于其常化溫度低、常化冷卻速率快, 一次再結晶晶粒尺寸小, 二次再結晶開始溫度稍早, 黃銅取向晶粒出現, 最終磁性差.滲氮量較高的高溫滲氮和低溫滲氮樣品雖都能基本完成二次再結晶, 但磁性存在差異, 磁性差的原因是高溫滲氮樣品的最終退火板中出現較多的偏{210} < 001>取向晶粒.Abstract: The influences of the normalization parameters and nitriding parameters on the microstructure of normalized samples, the primary recrystallization microstructure, and inhibitors were analyzed by electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM) techniques. The effects of normalizing cooling rates, nitriding temperatures and nitrogen content on the primary recrystallization and secondary recrystallization microstructure, textures, and properties were studied. The results show that grain sizes decrease with the increasing normalizing cooling rate; when the rate is slow, the grain size of high-temperature nitriding sample increases with the slow normalizing cooling rate, reducing the driving force for secondary recrystallization and increasing secondary recrystallization temperature. The acquired inhibitor is insufficient, which leads to unsuccessful secondary recrystallization. High-temperature nitriding and low-temperature nitriding lead to different sizes of inhibitors in the decarburized sheets; however, inhibitors in the surface and subsurface regions of high-temperature nitriding samples are primarily of the same size, while the inhibitors in the surface region of low-temperature nitriding samples are larger than those of the subsurface inhibitors. The lower-temperature nitriding sample with low nitrogen content exhibits a poor magnetic property. As the grain size remains small at a low normalizing temperature and high normalizing cooling rate, the second recrystallization starts at a slightly lower temperature and Brass-type oriented grains are present. The secondary recrystallization of high-temperature nitriding and low-temperature nitriding samples with high nitrogen content could be basically completed; however, the magnetic properties of samples are different, and more grains with deviated {210} < 001> orientation lead to a reduction in magnetic properties.
-
圖 3 不同樣品一次再結晶取向成像及相應的ODF圖. (a), (d), (g), (j), (m)分別為ABCDE樣品的一次再結晶取向成像; (b, c)(e, f)(h, i)(k, l)(n, o)分別為ABCDE樣品的ODF圖
Figure 3. Orientation maps and ODFs of different samples after primary recrystallization: (a), (d), (g), (j), (m) orientation maps of ABCDE; (b), (e), (h), (k), (n): ODF of ABCDE; (c), (f), (i), (l), (o): ODF of ABCDE
圖 6 高溫退火中斷試樣宏觀組織. A樣品:(a) 950 ℃; (b) 1000 ℃; (c) 1050 ℃; (d) 1100 ℃; E樣品:(e) 950 ℃; (f) 1000 ℃; (g) 1050 ℃; (h) 1100 ℃; D樣品:(i) 950 ℃; (j) 1000 ℃; (k) 1050 ℃; (l) 1100 ℃
Figure 6. Macrostructure of the samples after interrupted high temperature annealing. Sample A: (a) 950 ℃; (b) 1000 ℃; (c) 1050 ℃; (d) 1100 ℃; sample E: (e) 950 ℃; (f) 1000 ℃; (g) 1050 ℃; (h) 1100 ℃; sample D: (i) 950 ℃; (j) 1000 ℃; (k) 1050 ℃; (l) 1100 ℃
表 1 低溫取向硅鋼工藝參數、滲氮信息及成品磁性能
Table 1. Process parameters, nitriding information, and magnetic properties of grain-oriented silicon steel
常化板編號 脫碳板編號 常化溫度 常化冷速 滲氮溫度/℃ 氮質量分數/10-6 磁感,B8/T A1 A 低溫(-20 ℃) 快冷(+5 ℃·s-1) 750~800 203 1.665 B1 B 中溫 正常冷速 850~900 242 1.776 C1 C 中溫 正常冷速 750~800 225 1.865 D1 D 中溫 正常冷速 750~800 240 1.834 E1 E 中溫 慢冷(-5 ℃·s-1) 850~900 208 1.652 表 2 不同樣品一次再結晶織構和晶粒平均尺寸
Table 2. Primary recrystallization textures and average grain size of different samples
樣品編號 晶粒平均尺寸/μm 織構面積占比/% {110}<001> {111}<112> {114}<481> {100}<012> A 15.9 0.383 11.50 27.2 12.4 B 18.5 1.320 12.90 28.1 13.1 C 21.7 2.410 10.90 19.4 11.4 D 20.3 1.060 7.74 30.5 16.6 E 23.7 0.244 11.00 28.4 16.6 表 3 脫碳板中抑制劑平均尺寸及數量
Table 3. Average size and quantity of inhibitors in the decarbonized sheets
樣品編號(滲氮溫度) 表層抑制劑 次表層抑制劑 表層與次表層抑制劑尺寸之差/nm 尺寸/nm 個數 面密度/μm-2 尺寸/nm 個數 面密度/μm-2 A(低溫) 45 925 2.49 29.7 842 2.27 15.3 B(高溫) 52.2 849 2.29 47.6 343 0.92 4.6 C(低溫) 60.4 697 1.88 39.9 461 1.24 20.3 D(低溫) 54.5 845 2.28 38.8 384 1.03 15.7 E(高溫) 69.2 319 0.86 66.9 216 0.58 2.3 259luxu-164 -
參考文獻
[1] Ling C, Xiang L, Qiu S T, et al. Effects of normalizing annealing on grain-oriented silicon steel. J Iron Steel Res Int, 2014, 21(7): 690 doi: 10.1016/S1006-706X(14)60107-2 [2] Li H, Feng Y L, Song M, et al. Effect of normalizing cooling process on microstructure and precipitates in low-temperature silicon steel. Trans Nonferrous Met Soc China, 2014, 24(3): 770 doi: 10.1016/S1003-6326(14)63124-1 [3] Wang R P, Li S D, Fang Z M, et al. Microstructure and precipitate of low temperature hot rolled HGO silicon steel plate by normalizing. Heat Treat Met, 2009, 34(6): 9 doi: 10.3969/j.issn.1673-4971.2009.06.003王若平, 黎世德, 方澤民, 等. 低溫熱軋高磁感取向硅鋼板常化組織及析出相研究. 金屬熱處理, 2009, 34(6): 9 doi: 10.3969/j.issn.1673-4971.2009.06.003 [4] Shimizu Y, Ito Y, Iida Y. Formation of the Goss orientation near the surface of 3 pct silicon steel during hot rolling. Metall Trans A, 1986, 17(8): 1323 doi: 10.1007/BF02650113 [5] Liao C C, Hou C K. Effect of nitriding time on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel. J Magn Magn Mater, 2010, 322(4): 434 doi: 10.1016/j.jmmm.2009.09.072 [6] Wang R, Yang P, Liu G T. Effect of nitriding temperature on inhibitor precipitation and the annealed microstructure of grain-oriented silicon steel produced by acquired inhibitor method. Chin J Stereology Image Anal, 2016, 21(3): 272 https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201603004.htm王瑞, 楊平, 劉恭濤. 滲氮溫度對獲得抑制劑取向硅鋼粒子析出及退火組織的影響. 中國體視學與圖像分析, 2016, 21(3): 272 https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201603004.htm [7] Ushigami Y, Kurosawa F, Masui H, et al. Precipitation behaviors of injected nitride inhibitors during secondary recrystallization annealing in grain oriented silicon steel. Mater Sci Forum, 1996, 204-206: 593 doi: 10.4028/www.scientific.net/MSF.204-206.593 [8] Wu Z W, Li J, Zhao Y, et al. Rules of precipitate transformation for grain-oriented silicon steel producted by acquired inhibitor method. J Iron Steel Res, 2011, 23(12): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201112012.htm吳忠旺, 李軍, 趙宇, 等. 后天抑制劑獲得法制取向硅鋼析出物的轉化規律. 鋼鐵研究學報, 2011, 23(12): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201112012.htm [9] Wu Z W, Li J, Zhao Y, et al. Evolution of inhibitor in the annealing process at high temperature of low temperature hot roll and nitriding grain-oriented silicon steel. Trans Mater Heat Treat, 2011, 32(11): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201111020.htm吳忠旺, 趙宇, 李軍, 等. 低溫取向硅鋼高溫退火抑制劑的演化. 材料熱處理學報, 2011, 32(11): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201111020.htm [10] Song H J, Yang P, Mao W M. Nitrogen behavior during nitriding treatment of electrical steel. Heat Treat Met, 2012, 37(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201201009.htm宋惠軍, 楊平, 毛衛民. 電工鋼滲氮的氮行為. 金屬熱處理, 2012, 37(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201201009.htm [11] Imamura T, Shingaki Y, Hayakawa Y. Effect of cold rolling reduction rate on secondary recrystallized texture in 3 pct Si-Fe steel. Metall Mater Trans A, 2013, 44(4): 1785 doi: 10.1007/s11661-012-1525-6 [12] Homma H, Hutchinson B. Orientation dependence of secondary recrystallization in silicon-iron. Acta Mater, 2003, 51(13): 3795 doi: 10.1016/S1359-6454(03)00193-9 [13] Kumano T, Haratani T, Fujii N. Effect of nitriding on grain oriented silicon steel bearing aluminum. ISIJ Int, 2005, 45(1): 95 doi: 10.2355/isijinternational.45.95 [14] Kumano T, Ohata Y, Fujii N, et al. Effect of nitriding on grain oriented silicon steel bearing aluminum (the second study). J Magn Magn Mater, 2006, 304(2): e602 doi: 10.1016/j.jmmm.2006.02.188 [15] Yoshitomi Y, Ushigami Y, Takahashi N, et al. Prediction method of sharpness of {110} < 001 > secondary recrystallization texture of Fe-3% Si alloy. Mater Sci Forum, 1996, 204-206: 629 doi: 10.4028/www.scientific.net/MSF.204-206.629 [16] Kim J K, Woo J S, Chang S K. Influence of annealing before cold rolling on the evolution of sharp Goss texture in Fe-3%Si alloy. J Magn Magn Mater, 2000, 215-216: 162 doi: 10.1016/S0304-8853(00)00103-7 [17] Harase J, Kurosawa F, Ushigami Y, et al. Change of magnetic induction of nitrided Fe-3%Si alloy during secondary recrystallization annealing. J Jpn Inst Met, 1995, 59(9): 917 doi: 10.2320/jinstmet1952.59.9_917 [18] Ushigami Y, Nakayama T, Suga Y, et al. Influence of secondary recrystallization temperature on secondary recrystallization texture in Fe-3%Si alloy. Mater Sci Forum, 1996, 204-206: 605 doi: 10.4028/www.scientific.net/MSF.204-206.605 [19] Yan M Q, Qian H, Yang P, et al. Behaviors of brass texture and its influence on Goss texture in grain oriented electrical steels. Acta Metall Sin, 2012, 48(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201201004.htm顏孟奇, 錢浩, 楊平, 等. 電工鋼中黃銅織構行為及其對Goss織構的影響. 金屬學報, 2012, 48(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201201004.htm [20] Yoshitomi Y, Ushigami Y, Harase J, et al. Coincidence grain boundary and role of primary recrystallized grain growth on secondary recrystallization texture evolution in Fe-3% Si alloy. Acta Metall Mater, 1994, 42(8): 2593 doi: 10.1016/0956-7151(94)90200-3 [21] Gangli P, Szpunar J A. The use of Σ operators in investigating secondary recrystallization of 3% silicon steel. Mater Sci Forum, 1994, 157-162: 953 doi: 10.4028/www.scientific.net/MSF.157-162.953 [22] Wang Y, Xu Y B, Zhang Y X, et al. On abnormal growth of {210}<001>grain in grain-oriented silicon steel. Mater Res Bull, 2015, 69: 138 doi: 10.1016/j.materresbull.2014.12.022 -