<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

從腐泥土型紅土鎳礦制備共摻雜MgFe2O4物相轉化規律及催化性能

韓星 閆治開 陳婷 張梅 郭敏

韓星, 閆治開, 陳婷, 張梅, 郭敏. 從腐泥土型紅土鎳礦制備共摻雜MgFe2O4物相轉化規律及催化性能[J]. 工程科學學報, 2019, 41(5): 600-609. doi: 10.13374/j.issn2095-9389.2019.05.006
引用本文: 韓星, 閆治開, 陳婷, 張梅, 郭敏. 從腐泥土型紅土鎳礦制備共摻雜MgFe2O4物相轉化規律及催化性能[J]. 工程科學學報, 2019, 41(5): 600-609. doi: 10.13374/j.issn2095-9389.2019.05.006
HAN Xing, YAN Zhi-kai, CHEN Ting, ZHANG Mei, GUO Min. Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from saprolite laterite[J]. Chinese Journal of Engineering, 2019, 41(5): 600-609. doi: 10.13374/j.issn2095-9389.2019.05.006
Citation: HAN Xing, YAN Zhi-kai, CHEN Ting, ZHANG Mei, GUO Min. Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from saprolite laterite[J]. Chinese Journal of Engineering, 2019, 41(5): 600-609. doi: 10.13374/j.issn2095-9389.2019.05.006

從腐泥土型紅土鎳礦制備共摻雜MgFe2O4物相轉化規律及催化性能

doi: 10.13374/j.issn2095-9389.2019.05.006
基金項目: 

國家重點基礎研究發展計劃資助項目 2014CB643401

國家自然科學基金資助項目 51672025

詳細信息
    通訊作者:

    郭敏, E-mail: guomin@ustb.edu.cn

  • 中圖分類號: TF803.21;TB34

Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from saprolite laterite

More Information
  • 摘要: 采用酸浸-水熱-煅燒法從腐泥土型紅土鎳礦中制備磁性多金屬共摻雜型MgFe2O4異相類芬頓(Fenton)催化劑.利用X射線衍射(XRD)、傅立葉紅外光譜(FTIR)、掃描電子顯微鏡(SEM)和比表面積及孔徑分布測定(BET-BJH)等手段, 考察了煅燒溫度對所制備產物結構、形貌和比表面積及孔徑分布的影響, 并研究了所制備產物作為異相Fenton催化劑降解羅丹明B (RhB)溶液的催化活性.結果表明, 水熱合成產物為層狀雙(多)金屬氫氧化物和尖晶石型MgFe2O4復合物.通過300℃的煅燒, 層狀雙(多)金屬氫氧化物就能分解并生成MgFe2O4; 隨著煅燒溫度的提高, 產物結晶度增加、粒徑尺寸變大, 形貌逐漸生長為近球型顆粒且分散度漸漸提高, 同時介孔數量減少、比表面積減小.經過500℃煅燒的試樣H-C500顯示出優異的催化降解活性.在體系反應溫度為45℃、pH值為6.44、催化劑用量為0.625 g·L-1且H2O2體積分數為1.0%的條件下, 經過300 min, 10 mg·L-1的羅丹明B溶液降解率可達到97.8%, 同時總有機碳(TOC)去除率達到77.8%.重復使用3次后, 催化劑仍能保持較高活性, 降解率和TOC去除率減少量分別少于3.0%和5.0%.

     

  • 圖  1  水熱及不同溫度煅燒產物的X射線衍射圖譜

    Figure  1.  XRD patterns of as-prepared products through hydrothermal method and calcinated at different temperatures

    圖  2  水熱產物H的TG-DSC曲線

    Figure  2.  TG-DSC curves of hydrothermal product H

    圖  3  產物H、H-C500和H-C1000的紅外光譜圖

    Figure  3.  FTIR spectra of products H, H-C500 and H-C1000

    圖  4  產物場發射掃描電鏡圖片((c), (d)插圖為粒徑分布). (a) P; (b) H; (c) H-C500; (d) H-C1000

    Figure  4.  FESEM micrographs of products (Inset: particle-size distribution): (a) P; (b) H; (c) H-C500; (d) H-C1000

    圖  5  產物H、H-C500和H-C1000的孔結構特征. (a) 吸附-脫附等溫曲線; (b) BJH孔徑分布曲線

    Figure  5.  Pore structure characteristics of products H, H-C500 and H-C1000: (a) adsorption-desorption isotherm curves; (b) BJH pore-size distribution curves

    圖  6  產物H-C500的X射線光電子能譜圖. (a) 全譜圖; (b) Fe 2p高分辨譜圖; (c) Al 2p高分辨譜圖; (d) Mg 2p高分辨譜圖; (e) Ni 2p高分辨譜圖

    Figure  6.  XPS spectrum of product H-C500: (a) the whole XPS spectrum; (b) Fe 2p high resolution spectrum; (c) Al 2p high resolution spectrum; (d) Mg 2p high resolution spectrum; (e) Ni 2p high resolution spectrum

    圖  7  不同反應體系中RhB降解曲線

    Figure  7.  RhB degradation curves in different reaction systems

    圖  8  最優條件下捕獲·OH自由基產生2-羥基對苯二甲酸熒光光譜圖(a)和相應的·OH自由基濃度(b)

    Figure  8.  Fluorescence spectra of 2-hydroxy terephthalic acid produced by trapping ·OH radicals under the optimal condition (a) and corresponding ·OH radical concentrations (b)

    圖  9  產物H-C500的磁滯回線圖(a)及其循環利用降解RhB實驗圖(b)

    Figure  9.  Hysteresis loops of product H-C500 (a) and its recycling study of the degradation of RhB (b)

    圖  10  H-C500及其循環使用三次后試樣的X射線衍射圖譜

    Figure  10.  XRD patterns of samples H-C500 and used H-C500 after three successive recycles

    表  1  X射線熒光光譜分析測定紅土鎳礦化學成分(質量分數)

    Table  1.   Chemical compositions of saprolite laterite analyzed by XRF ?%

    Ni Co Mn Mg Fe Cr Al Ti Ca Si Zn
    2.60 0.06 0.42 9.68 19.17 0.64 2.63 0.05 0.18 21.36 0.02
    下載: 導出CSV

    表  2  ICP-OES測定紅土鎳礦浸出液中主要金屬元素含量及浸出率

    Table  2.   Chemical analysis and leaching efficiency of leaching solution by ICP-OES

    元素 質量濃度/(g·L-1) 浸出率/%
    Ni 1.79 86.25
    Co 0.05 95.83
    Mn 0.31 93.15
    Mg 6.47 83.54
    Fe 13.49 87.98
    Al 0.82 38.74
    下載: 導出CSV

    表  3  原子吸收光譜測定最優條件下不同反應時間溶液中Fe離子濃度

    Table  3.   Change of leaching concentration for iron ions with reaction 11:02:58

    反應時間/min 質量濃度/(mg·L-1)
    60 <0.1
    120 <0.1
    180 <0.1
    240 <0.1
    300 <0.1
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Turhan K, Durukan I, Ozturkcan S A, et al. Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigments, 2012, 92(3): 897 doi: 10.1016/j.dyepig.2011.07.012
    [2] Singh K, Arora S. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol, 2011, 41(9): 807 doi: 10.1080/10643380903218376
    [3] Pliego G, Zazo J A, Garcia-Mu?oz P, et al. Trends in the intensification of the Fenton process for wastewater treatment: an overview. Crit Rev Environ Sci Technol, 2015, 45(24): 2611 doi: 10.1080/10643389.2015.1025646
    [4] Nidheesh P V. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv, 2015, 5(51): 40552 doi: 10.1039/C5RA02023A
    [5] Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl Catal B: Environ, 2010, 99(1-2): 1 doi: 10.1016/j.apcatb.2010.07.006
    [6] Munoz M, de Pedro Z M, Casas J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation-A review. Appl Catal B: Environ, 2015, 176-177: 249 doi: 10.1016/j.apcatb.2015.04.003
    [7] Zhong Y H, Liang X L, He Z S, et al. The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation. Appl Catal B: Environ, 2014, 150-151: 612 doi: 10.1016/j.apcatb.2014.01.007
    [8] Liang X L, He Z S, Zhong Y H, et al. The effect of transition metal substitution on the catalytic activity of magnetite in heterogeneous Fenton reaction: in interfacial view. Colloids Surf A: Physicochem Eng Aspects, 2013, 435: 28 doi: 10.1016/j.colsurfa.2012.12.038
    [9] Wang Y B, Zhao H Y, Li M F, et al. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl Catal B: Environ, 2014, 147: 534 doi: 10.1016/j.apcatb.2013.09.017
    [10] Sharma R, Bansal S, Singhal S. Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M=Cu, Zn, Ni and Co) in the structure. RSC Adv, 2015, 5(8): 6006 doi: 10.1039/C4RA13692F
    [11] Wu R C, Qu J H. Removal of water-soluble azo dye by the magnetic material MnFe2O4. J Chem Technol Biotechnol, 2005, 80(1): 20 doi: 10.1002/jctb.1142
    [12] Rad L R, Ghazani B F, Irani M, et al. Comparison study of phenol degradation using cobalt ferrite nanoparticles synthesized by hydrothermal and microwave methods. Desalination Water Treat, 2015, 56(12): 3393 doi: 10.1080/19443994.2014.977960
    [13] Tan P L. Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane. J Catal, 2016, 338: 21 doi: 10.1016/j.jcat.2016.01.027
    [14] Dhiman M, Goyal A, Kumar V, et al. Designing different morphologies of NiFe2O4 for tuning of structural, optical and magnetic properties for catalytic advancements. New J Chem, 2016, 40(12): 10418 doi: 10.1039/C6NJ03209E
    [15] Zhang T Z, Li J, Wen B C, et al. Preparation and magnetization behaviors of CoFe2O4-p-MgFe2O4 binary ferrofluids. J Southwest Univ Nat Sci Ed, 2009, 31(7): 88 https://www.cnki.com.cn/Article/CJFDTOTAL-XNND200907016.htm

    張廷珍, 李建, 文榜才, 等. 二元CoFe2O4-p-MgFe2O4磁性液體的制備及磁化特性研究. 西南大學學報(自然科學版), 2009, 31(7): 88 https://www.cnki.com.cn/Article/CJFDTOTAL-XNND200907016.htm
    [16] Khot V M, Salunkhe A B, Thorat N D, et al. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications. J Magn Magn Mater, 2013, 332: 48 doi: 10.1016/j.jmmm.2012.12.010
    [17] Zhang C L, Yeo S, Horibe Y, et al. Coercivity and nanostructure in magnetic spinel Mg(Mn, Fe)2O4. Appl Phys Lett, 2007, 90(13): 133123 doi: 10.1063/1.2717568
    [18] Dillert R, Taffa D H, Wark M, et al. Research update: photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation. APL Mater, 2015, 3(10): 104001 doi: 10.1063/1.4931763
    [19] Jiang J H, Fan W Q, Zhang X, et al. Rod-in-tube nanostructure of MgFe2O4: electrospinning synthesis and photocatalytic activities of tetracycline. New J Chem, 2016, 40(1): 538 doi: 10.1039/C5NJ02491A
    [20] Fan W Q, Li M, Bai H Y, et al. Fabrication of MgFe2O4/MoS2 heterostructure nanowires for photoelectrochemical catalysis. Langmuir, 2016, 32(6): 1629 doi: 10.1021/acs.langmuir.5b03887
    [21] Shen Y, Wu Y B, Li X Y, et al. One-pot synthesis of MgFe2O4 nanospheres by solvothermal method. Mater Lett, 2013, 96: 85 doi: 10.1016/j.matlet.2013.01.023
    [22] Sasaki T, Ohara S, Naka T, et al. Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction. J Supercrit Fluids, 2010, 53(1-3): 92 doi: 10.1016/j.supflu.2009.11.005
    [23] Ghanbari D, Salavati-Niasari M. Hydrothermal synthesis of different morphologies of MgFe2O4 and magnetic cellulose acetate nanocomposite. Korean J Chem Eng, 2015, 32(5): 903 doi: 10.1007/s11814-014-0306-x
    [24] Robinson D, Mcdonald R, Zhang W S, et al. Developments in the hydrometallurgical processing of nickel laterites // COM2017 Conference of Metallurgists. Vancouver, 2017: 9526
    [25] Quast K, Connor J N, Skinner W, et al. Preconcentration strategies in the processing of nickel laterite ores Part 1: literature review. Miner Eng, 2015, 79: 261 doi: 10.1016/j.mineng.2015.03.017
    [26] Yan Z K, Gao J M, Li Y, et al. Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv, 2015, 5(112): 92778 doi: 10.1039/C5RA17145H
    [27] Goh K H, Lim T T, Dong Z L. Application of layered double hydroxides for removal of oxyanions: a review. Water Res, 2008, 42(6-7): 1343 doi: 10.1016/j.watres.2007.10.043
    [28] Theiss F L, Ayoko G A, Frost R L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods——a review. Appl Surf Sci, 2016, 383: 200 doi: 10.1016/j.apsusc.2016.04.150
    [29] Kang D J, Yu X L, Tong S R, et al. Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution. Chem Eng J, 2013, 228: 731 doi: 10.1016/j.cej.2013.05.041
    [30] Sun Y Y, Ji G B, Zheng M B, et al. Synthesis and magnetic properties of crystalline mesoporous CoFe2O4 with large specific surface area. J Mater Chem, 2010, 20(5): 945 doi: 10.1039/B919090B
    [31] Tshabalala K G, Cho S H, Park J K, et al. Luminescent properties and X-ray photoelectron spectroscopy study of ZnAl2O4: Ce3+, Tb3+ phosphor. J Alloys Compd, 2011, 509(41): 10115 doi: 10.1016/j.jallcom.2011.08.054
    [32] Zhang H, Qi R, Evans D G, et al. Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core. J Solid State Chem, 2004, 177(3): 772 doi: 10.1016/j.jssc.2003.09.009
    [33] Tudorache F, Popa P D, Dobromir M, et al. Studies on the structure and gas sensing properties of nickel-cobalt ferrite thin films prepared by spin coating. Mater Sci Eng B, 2013, 178(19): 1334 doi: 10.1016/j.mseb.2013.03.019
    [34] Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng, 2014, 2(1): 557 doi: 10.1016/j.jece.2013.10.011
    [35] Pantopoulos K, Schipper H M, et al. Principles of Free Radical Biomedicine. 1st Ed. New York: Nova Science Publishers Inc, 2012
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數:  1108
  • HTML全文瀏覽量:  475
  • PDF下載量:  19
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-04-28
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回