Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from saprolite laterite
-
摘要: 采用酸浸-水熱-煅燒法從腐泥土型紅土鎳礦中制備磁性多金屬共摻雜型MgFe2O4異相類芬頓(Fenton)催化劑.利用X射線衍射(XRD)、傅立葉紅外光譜(FTIR)、掃描電子顯微鏡(SEM)和比表面積及孔徑分布測定(BET-BJH)等手段, 考察了煅燒溫度對所制備產物結構、形貌和比表面積及孔徑分布的影響, 并研究了所制備產物作為異相Fenton催化劑降解羅丹明B (RhB)溶液的催化活性.結果表明, 水熱合成產物為層狀雙(多)金屬氫氧化物和尖晶石型MgFe2O4復合物.通過300℃的煅燒, 層狀雙(多)金屬氫氧化物就能分解并生成MgFe2O4; 隨著煅燒溫度的提高, 產物結晶度增加、粒徑尺寸變大, 形貌逐漸生長為近球型顆粒且分散度漸漸提高, 同時介孔數量減少、比表面積減小.經過500℃煅燒的試樣H-C500顯示出優異的催化降解活性.在體系反應溫度為45℃、pH值為6.44、催化劑用量為0.625 g·L-1且H2O2體積分數為1.0%的條件下, 經過300 min, 10 mg·L-1的羅丹明B溶液降解率可達到97.8%, 同時總有機碳(TOC)去除率達到77.8%.重復使用3次后, 催化劑仍能保持較高活性, 降解率和TOC去除率減少量分別少于3.0%和5.0%.
-
關鍵詞:
- 腐泥土型紅土鎳礦 /
- 酸浸 /
- 水熱 /
- 煅燒 /
- 共摻雜MgFe2O4 /
- 異相類Fenton催化劑
Abstract: Heterogeneous Fenton-like method has attracted considerable attention because of its potential effectiveness in mineralization of organic contaminants in a wide range of reaction medium pH. Spinel ferrites MFe2O4 (M=Fe, Zn, Cu, Ni, Mn, Co) as heterogeneous Fenton-like catalysts have been studied extensively due to their good catalytic activity, prominent physical and chemical stability, and excellent magnetic properties, which allow their easy separation from the reaction medium by magnetic field for further circular utilization. Considering the group of ferrites, limited research focused on the utilization of MgFe2O4 as heterogeneous Fenton catalytic agent, whereas most of the catalysts are synthesized by pure chemical reagents. In this study, magnetic multi-metal co-doped MgFe2O4 heterogeneous Fenton-like catalyst was synthesized from saprolite laterite by acid leaching-hydrothermal calcination method. The effect of calcination temperature on the phase, morphology, specific surface area, and pore size distribution of samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared, Brunauer-Emmett-Teller/Barrett-Joyner-Halenda analysis. The catalytic activity of the as-prepared products as heterogeneous Fenton catalysts for the degradation of Rhodamine B (RhB) solution was also investigated. The results show that the layered double (multi) hydroxides coupled with a portion of magnesium ferrite are synthesized by hydrothermal method, and the cubic crystal MgFe2O4 is obtained by decomposition of the layered double (multi) hydroxides after calcination above 300℃. With the increase in calcining temperature, the crystallinity of the products increases, and the particle size becomes larger. The morphology gradually grows to near spheroidal particles, and the dispersion degree gradually increases. Meanwhile, the pore size becomes larger, and the specific surface area is reduced. Calcination of sample H-C500 exhibits the best catalytic activity for the degradation of RhB after 500℃, achieving 97.8% degradation efficiency of 10 mg·L-1 RhB after 300 min at the reaction conditions of 45℃, pH 6.44, 0.625 g·L-1 catalyst dosage, and 1.0% (volume fraction) H2O2. The total organic carbon (TOC) removal could reach 77.8%. The reused catalyst can still maintain high activity, and after three consecutive degradation cycles, the reduction of degradation efficiency and TOC removal efficiency are less than 3.0% and 5.0%, respectively. -
圖 6 產物H-C500的X射線光電子能譜圖. (a) 全譜圖; (b) Fe 2p高分辨譜圖; (c) Al 2p高分辨譜圖; (d) Mg 2p高分辨譜圖; (e) Ni 2p高分辨譜圖
Figure 6. XPS spectrum of product H-C500: (a) the whole XPS spectrum; (b) Fe 2p high resolution spectrum; (c) Al 2p high resolution spectrum; (d) Mg 2p high resolution spectrum; (e) Ni 2p high resolution spectrum
表 1 X射線熒光光譜分析測定紅土鎳礦化學成分(質量分數)
Table 1. Chemical compositions of saprolite laterite analyzed by XRF ?
% Ni Co Mn Mg Fe Cr Al Ti Ca Si Zn 2.60 0.06 0.42 9.68 19.17 0.64 2.63 0.05 0.18 21.36 0.02 表 2 ICP-OES測定紅土鎳礦浸出液中主要金屬元素含量及浸出率
Table 2. Chemical analysis and leaching efficiency of leaching solution by ICP-OES
元素 質量濃度/(g·L-1) 浸出率/% Ni 1.79 86.25 Co 0.05 95.83 Mn 0.31 93.15 Mg 6.47 83.54 Fe 13.49 87.98 Al 0.82 38.74 表 3 原子吸收光譜測定最優條件下不同反應時間溶液中Fe離子濃度
Table 3. Change of leaching concentration for iron ions with reaction 11:02:58
反應時間/min 質量濃度/(mg·L-1) 60 <0.1 120 <0.1 180 <0.1 240 <0.1 300 <0.1 259luxu-164 -
參考文獻
[1] Turhan K, Durukan I, Ozturkcan S A, et al. Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigments, 2012, 92(3): 897 doi: 10.1016/j.dyepig.2011.07.012 [2] Singh K, Arora S. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol, 2011, 41(9): 807 doi: 10.1080/10643380903218376 [3] Pliego G, Zazo J A, Garcia-Mu?oz P, et al. Trends in the intensification of the Fenton process for wastewater treatment: an overview. Crit Rev Environ Sci Technol, 2015, 45(24): 2611 doi: 10.1080/10643389.2015.1025646 [4] Nidheesh P V. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv, 2015, 5(51): 40552 doi: 10.1039/C5RA02023A [5] Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl Catal B: Environ, 2010, 99(1-2): 1 doi: 10.1016/j.apcatb.2010.07.006 [6] Munoz M, de Pedro Z M, Casas J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation-A review. Appl Catal B: Environ, 2015, 176-177: 249 doi: 10.1016/j.apcatb.2015.04.003 [7] Zhong Y H, Liang X L, He Z S, et al. The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation. Appl Catal B: Environ, 2014, 150-151: 612 doi: 10.1016/j.apcatb.2014.01.007 [8] Liang X L, He Z S, Zhong Y H, et al. The effect of transition metal substitution on the catalytic activity of magnetite in heterogeneous Fenton reaction: in interfacial view. Colloids Surf A: Physicochem Eng Aspects, 2013, 435: 28 doi: 10.1016/j.colsurfa.2012.12.038 [9] Wang Y B, Zhao H Y, Li M F, et al. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl Catal B: Environ, 2014, 147: 534 doi: 10.1016/j.apcatb.2013.09.017 [10] Sharma R, Bansal S, Singhal S. Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M=Cu, Zn, Ni and Co) in the structure. RSC Adv, 2015, 5(8): 6006 doi: 10.1039/C4RA13692F [11] Wu R C, Qu J H. Removal of water-soluble azo dye by the magnetic material MnFe2O4. J Chem Technol Biotechnol, 2005, 80(1): 20 doi: 10.1002/jctb.1142 [12] Rad L R, Ghazani B F, Irani M, et al. Comparison study of phenol degradation using cobalt ferrite nanoparticles synthesized by hydrothermal and microwave methods. Desalination Water Treat, 2015, 56(12): 3393 doi: 10.1080/19443994.2014.977960 [13] Tan P L. Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane. J Catal, 2016, 338: 21 doi: 10.1016/j.jcat.2016.01.027 [14] Dhiman M, Goyal A, Kumar V, et al. Designing different morphologies of NiFe2O4 for tuning of structural, optical and magnetic properties for catalytic advancements. New J Chem, 2016, 40(12): 10418 doi: 10.1039/C6NJ03209E [15] Zhang T Z, Li J, Wen B C, et al. Preparation and magnetization behaviors of CoFe2O4-p-MgFe2O4 binary ferrofluids. J Southwest Univ Nat Sci Ed, 2009, 31(7): 88 https://www.cnki.com.cn/Article/CJFDTOTAL-XNND200907016.htm張廷珍, 李建, 文榜才, 等. 二元CoFe2O4-p-MgFe2O4磁性液體的制備及磁化特性研究. 西南大學學報(自然科學版), 2009, 31(7): 88 https://www.cnki.com.cn/Article/CJFDTOTAL-XNND200907016.htm [16] Khot V M, Salunkhe A B, Thorat N D, et al. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications. J Magn Magn Mater, 2013, 332: 48 doi: 10.1016/j.jmmm.2012.12.010 [17] Zhang C L, Yeo S, Horibe Y, et al. Coercivity and nanostructure in magnetic spinel Mg(Mn, Fe)2O4. Appl Phys Lett, 2007, 90(13): 133123 doi: 10.1063/1.2717568 [18] Dillert R, Taffa D H, Wark M, et al. Research update: photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation. APL Mater, 2015, 3(10): 104001 doi: 10.1063/1.4931763 [19] Jiang J H, Fan W Q, Zhang X, et al. Rod-in-tube nanostructure of MgFe2O4: electrospinning synthesis and photocatalytic activities of tetracycline. New J Chem, 2016, 40(1): 538 doi: 10.1039/C5NJ02491A [20] Fan W Q, Li M, Bai H Y, et al. Fabrication of MgFe2O4/MoS2 heterostructure nanowires for photoelectrochemical catalysis. Langmuir, 2016, 32(6): 1629 doi: 10.1021/acs.langmuir.5b03887 [21] Shen Y, Wu Y B, Li X Y, et al. One-pot synthesis of MgFe2O4 nanospheres by solvothermal method. Mater Lett, 2013, 96: 85 doi: 10.1016/j.matlet.2013.01.023 [22] Sasaki T, Ohara S, Naka T, et al. Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction. J Supercrit Fluids, 2010, 53(1-3): 92 doi: 10.1016/j.supflu.2009.11.005 [23] Ghanbari D, Salavati-Niasari M. Hydrothermal synthesis of different morphologies of MgFe2O4 and magnetic cellulose acetate nanocomposite. Korean J Chem Eng, 2015, 32(5): 903 doi: 10.1007/s11814-014-0306-x [24] Robinson D, Mcdonald R, Zhang W S, et al. Developments in the hydrometallurgical processing of nickel laterites // COM2017 Conference of Metallurgists. Vancouver, 2017: 9526 [25] Quast K, Connor J N, Skinner W, et al. Preconcentration strategies in the processing of nickel laterite ores Part 1: literature review. Miner Eng, 2015, 79: 261 doi: 10.1016/j.mineng.2015.03.017 [26] Yan Z K, Gao J M, Li Y, et al. Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv, 2015, 5(112): 92778 doi: 10.1039/C5RA17145H [27] Goh K H, Lim T T, Dong Z L. Application of layered double hydroxides for removal of oxyanions: a review. Water Res, 2008, 42(6-7): 1343 doi: 10.1016/j.watres.2007.10.043 [28] Theiss F L, Ayoko G A, Frost R L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods——a review. Appl Surf Sci, 2016, 383: 200 doi: 10.1016/j.apsusc.2016.04.150 [29] Kang D J, Yu X L, Tong S R, et al. Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution. Chem Eng J, 2013, 228: 731 doi: 10.1016/j.cej.2013.05.041 [30] Sun Y Y, Ji G B, Zheng M B, et al. Synthesis and magnetic properties of crystalline mesoporous CoFe2O4 with large specific surface area. J Mater Chem, 2010, 20(5): 945 doi: 10.1039/B919090B [31] Tshabalala K G, Cho S H, Park J K, et al. Luminescent properties and X-ray photoelectron spectroscopy study of ZnAl2O4: Ce3+, Tb3+ phosphor. J Alloys Compd, 2011, 509(41): 10115 doi: 10.1016/j.jallcom.2011.08.054 [32] Zhang H, Qi R, Evans D G, et al. Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core. J Solid State Chem, 2004, 177(3): 772 doi: 10.1016/j.jssc.2003.09.009 [33] Tudorache F, Popa P D, Dobromir M, et al. Studies on the structure and gas sensing properties of nickel-cobalt ferrite thin films prepared by spin coating. Mater Sci Eng B, 2013, 178(19): 1334 doi: 10.1016/j.mseb.2013.03.019 [34] Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng, 2014, 2(1): 557 doi: 10.1016/j.jece.2013.10.011 [35] Pantopoulos K, Schipper H M, et al. Principles of Free Radical Biomedicine. 1st Ed. New York: Nova Science Publishers Inc, 2012 -