-
摘要: 在對煤層深孔聚能爆破致裂分區研究的基礎上, 針對聚能爆破煤層裂隙擴展特征及范圍進行了數值模擬研究.結果表明, 炮孔周圍可劃分為爆破壓碎區、爆破裂隙區和彈性變形區, 根據裂隙類型及裂隙數目的差異, 爆破裂隙區又可劃分為裂隙密集區和主裂隙擴展區.受聚能裝藥結構的影響, 壓碎區的范圍呈聚能罩開口方向小于其他方向的類橢圓狀; 裂隙密集區和主裂隙擴展區的范圍均呈聚能罩開口方向大于其他方向的類橢圓狀.煤層深孔聚能爆破致裂增透工程試驗發現, 隨著遠離炮孔, 各個觀察孔內瓦斯體積分數增幅受聚能爆破的影響呈"強-中-弱"階梯狀變化, 與所構建的聚能爆破致裂分區模型比較一致, 即聚能爆破載荷下煤層裂隙具有明顯的分區特征, 壓碎區、裂隙密集區和主裂隙擴展區組成了煤層深孔聚能爆破的有效致裂范圍.Abstract: Deep-hole directional cumulative-blasting cracking technology has unique advantages for improving coal seam permeability. This paper was concerned with the range of the effective fracture zone under cumulative blasting using a linear-shaped charge in a coal seam. Based on the analysis of the mechanism of the directional cumulative-blasting in coal seams, the response characteristics of the coal under the coupled effects of the blasting-induced shock wave, stress wave, detonation gas and the energy-cumulative effect, and the partition characteristics of the crack in the cumulative-blasting-affected area were studied by theoretical analysis; moreover, a numerical analysis model of cumulative blasting was established, and the propagation distribution characteristics and range of coal seam fracture under cumulative blasting were investigated through numerical simulation. The results of the theoretical analysis and simulation show that the cumulative-blasting-affected area can be divided into crushed, crack, and elastic-deformation zones; further, the crack zone can be divided into crack-intensive and main crack-propagation zones according to the type and number of cracks. Additionally, a partition model for the influence of deep-hole cumulative blasting with linear-shaped charge in coal seams was constructed. Meanwhile, under the influence of the shaped-charge structure, the crushed zone has an oval-like shape with a small radius in the direction of the shaped-charge jet, while the crack-intensive and main crack-propagation zones have oval-like shapes with a larger radius in the direction of the shaped-charge jet. In addition, field experiments of deep-hole cumulative blasting with linear-shaped charge in coal seams were carried out and the experimental results show that the influence of the cumulative blasting on the increase of the coal-seam-gas volume fraction in each observation hole weakened in a step-wise manner (strong-medium-weak) with increasing distance from the blasting borehole; this is consistent with the partition model of the constructed cumulative blasting, i.e., the cumulative-blasting-affected area has certain zoning characteristics, and the crushed, crack-intensive, and main crack-propagation zones are the main components of the effective fracture zone.
-
圖 5 聚能爆破煤體致裂分區模型(①炮孔; ②壓碎區; ③侵徹槽; ④裂隙密集區; ⑤主裂隙擴展區; ⑥彈性變形區)
Figure 5. Partition characteristic of the failure zone around a contained shaped-charge explosion in a coal seam (①blasting borehole; ②crushed zone; ③penetration slot; ④crack-intensive zone; ⑤main crack propagation zone; ⑥elastic deformation zone)
259luxu-164 -
參考文獻
[1] Guo D Y, Zhao J C, Zhang C, et al. Mechanism of control hole on coal crack initiation and propagation under deep-hole cumulative blasting in coal seam. Chin J Rock Mech Eng, 2018, 37(4): 919 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804014.htm郭德勇, 趙杰超, 張超, 等. 煤層深孔聚能爆破控制孔作用機制研究. 巖石力學與工程學報, 2018, 37(4): 919 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804014.htm [2] Gong M, Liu W B, Wang D S, et al. Controlled blasting technique to improve gas pre-drainage effect in a coal mine. J Univ Sci Technol Beijing, 2006, 28(3): 223 doi: 10.3321/j.issn:1001-053X.2006.03.005龔敏, 劉萬波, 王德勝, 等. 提高煤礦瓦斯抽放效果的控制爆破技術. 北京科技大學學報, 2006, 28(3): 223 doi: 10.3321/j.issn:1001-053X.2006.03.005 [3] Guo D Y, Zhao J C, Lü P F, et al. Dynamic effects of deep-hole cumulative blasting in coal seam and its application. Chin J Eng, 2016, 38(12): 1681 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201612004.htm郭德勇, 趙杰超, 呂鵬飛, 等. 煤層深孔聚能爆破動力效應分析與應用. 工程科學學報, 2016, 38(12): 1681 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201612004.htm [4] Liu J, Liu Z G, Gao K, et al. Experimental study and application of directional focused energy blasting in deep boreholes. Chin J Rock Mech Eng, 2014, 33(12): 2490 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412014.htm劉健, 劉澤功, 高魁, 等. 深孔定向聚能爆破增透機制模擬試驗研究及現場應用. 巖石力學與工程學報, 2014, 33(12): 2490 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412014.htm [5] Mu C M, Wang H L, Huang W Y, et al. Increasing permeability mechanism using directional cumulative blasting in coal seams with high concentration of gas and low permeability. Rock Soil Mech, 2013, 34(9): 2496 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309010.htm穆朝民, 王海露, 黃文堯, 等. 高瓦斯低透氣性煤體定向聚能爆破增透機制. 巖土力學, 2013, 34(9): 2496 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309010.htm [6] Kutter H K, Fairhurst C. On the fracture process in blasting. Int J Rock Mech Min Sci Geomech Abstracts, 1971, 8(3): 181 doi: 10.1016/0148-9062(71)90018-0 [7] Chen S H, Wang M Y, Zhao Y T, et al. Time-stress history on interface between cracked and uncracked zones under rock blasting. Chin J Rock Mech Eng, 2003, 22(11): 1784 doi: 10.3321/j.issn:1000-6915.2003.11.006陳士海, 王明洋, 趙躍堂, 等. 巖石爆破破壞界面上的應力時程研究. 巖石力學與工程學報, 2003, 22(11): 1784 doi: 10.3321/j.issn:1000-6915.2003.11.006 [8] Guo D Y, Lü P F, Pei H B, et al. Numerical simulation on crack propagation of coal bed deep-hole cumulative blasting. J China Coal Soc, 2012, 37(2): 274 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201202023.htm郭德勇, 呂鵬飛, 裴海波, 等. 煤層深孔聚能爆破裂隙擴展數值模擬. 煤炭學報, 2012, 37(2): 274 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201202023.htm [9] Zong Q. Calculation of radius of cracked zone in rock by blast-induced stress wave. Blasting, 1994(2): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO402.005.htm宗琦. 巖石內爆炸應力波破裂區半徑的計算. 爆破, 1994(2): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO402.005.htm [10] Gao J S, Zhang J C. Dynamic analysis of fracturing mechanism of rock under explosion. Met Mine, 1989(9): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS198909001.htm高金石, 張繼春. 爆破破巖機理動力分析. 金屬礦山, 1989(9): 7 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS198909001.htm [11] Dai J. Calculation of radii of the broken and cracked areas in rock by a long charge explosion. J Liaoning Tech Univ Nat Sci Ed, 2001, 20(2): 144 doi: 10.3969/j.issn.1008-0562.2001.02.005戴俊. 柱狀裝藥爆破的巖石壓碎圈與裂隙圈計算. 遼寧工程技術大學學報(自然科學版), 2001, 20(2): 144 doi: 10.3969/j.issn.1008-0562.2001.02.005 [12] Esen S, Onederra I, Bilgin H A. Modelling the size of the crushed zone around a blasthole. Int J Rock Mech Min Sci, 2003, 40(4): 485 doi: 10.1016/S1365-1609(03)00018-2 [13] Far M S, Wang Y. Probabilistic analysis of crushed zone for rock blasting. Comput Geotech, 2016, 80: 290 doi: 10.1016/j.compgeo.2016.08.025 [14] Zhu Z M, Mohanty B, Xie H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks. Int J Rock Mech Min Sci, 2007, 44(3): 412 doi: 10.1016/j.ijrmms.2006.09.002 [15] Zhu W C, Wei C H, Li S, et al. Numerical modeling on destress blasting in coal seam for enhancing gas drainage. Int J Rock Mech Min Sci, 2013, 59: 179 doi: 10.1016/j.ijrmms.2012.11.004 [16] Yilmaz O, Unlu T. Three dimensional numerical rock damage analysis under blasting load. Tunnelling Underground Space Technol, 2013, 38: 266 doi: 10.1016/j.tust.2013.07.007 [17] Dehghan Banadaki M M, Mohanty B. Numerical simulation of stress wave induced fractures in rock. Int J Impact Eng, 2012, 40-41: 16 doi: 10.1016/j.ijimpeng.2011.08.010 [18] Lai X P, Cui F, Cao J T, et al. Extra-thick coal blasting mechanism and numerical simulation of partition failure. J China Coal Soc, 2014, 39(8): 1642 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408036.htm來興平, 崔峰, 曹建濤, 等. 特厚煤體爆破致裂機制及分區破壞的數值模擬. 煤炭學報, 2014, 39(8): 1642 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408036.htm [19] Wang W L. Hole Blasting. Beijing: China Coal Industry Publishing House, 1984王文龍. 鉆眼爆破. 北京: 煤炭工業出版社, 1984 [20] Xia X, Li J R, Li H B, et al. Study on damage characteristics of rock mass under blasting load in Ling'ao nuclear power station, Guangdong Province. Chin J Rock Mech Eng, 2007, 26(12): 2510 doi: 10.3321/j.issn:1000-6915.2007.12.017夏祥, 李俊如, 李海波, 等. 廣東嶺澳核電站爆破開挖巖體損傷特征研究. 巖石力學與工程學報, 2007, 26(12): 2510 doi: 10.3321/j.issn:1000-6915.2007.12.017 [21] Yang Y Q, Gao Q C, Yu M S, et al. Experimental study of mechanism and technology of directed crack blasting. J China Univ Min Technol, 1995, 5(2): 69 http://www.cnki.com.cn/Article/CJFDTotal-ZHKD199502008.htm [22] Taylor L M, Chen E P, Kuszmaul J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading. Comput Methods Appl Mech Eng, 1986, 55(3): 301 doi: 10.1016/0045-7825(86)90057-5 [23] Grady D E, Kipp M E. Continuum modelling of explosive fracture in oil shale. Int J Rock Mech Min Sci Geomech Abstracts, 1980, 17(3): 147 doi: 10.1016/0148-9062(80)91361-3 [24] Liu W X. Studies on the mechanism of fracture control blasting for mining rock materials. Explosion Shock Waves, 1993, 13(2): 118 https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ199302003.htm劉文軒. 斷裂控制爆破開采石材機理的研究. 爆炸與沖擊, 1993, 13(2): 118 https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ199302003.htm [25] Chu H B. Theoretical and Experimental Studies on Coal Blasting Action Mechanism[Dissertation]. Jiaozuo: Henan Polytechnic University, 2011褚懷保. 煤體爆破作用機理及試驗研究[學位論文]. 焦作: 河南理工大學, 2011 [26] Hallquist J O. LS-DYNA Keyword User's Manual (Version 971). Livermore: Livermore Software Technology Corporation, 2007 -