<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

中錳鋼的研究進展與前景

徐娟萍 付豪 王正 巖雨 李金許

徐娟萍, 付豪, 王正, 巖雨, 李金許. 中錳鋼的研究進展與前景[J]. 工程科學學報, 2019, 41(5): 557-572. doi: 10.13374/j.issn2095-9389.2019.05.002
引用本文: 徐娟萍, 付豪, 王正, 巖雨, 李金許. 中錳鋼的研究進展與前景[J]. 工程科學學報, 2019, 41(5): 557-572. doi: 10.13374/j.issn2095-9389.2019.05.002
XU Juan-ping, FU Hao, WANG Zheng, YAN Yu, LI Jin-xu. Research progress and prospect of medium manganese steel[J]. Chinese Journal of Engineering, 2019, 41(5): 557-572. doi: 10.13374/j.issn2095-9389.2019.05.002
Citation: XU Juan-ping, FU Hao, WANG Zheng, YAN Yu, LI Jin-xu. Research progress and prospect of medium manganese steel[J]. Chinese Journal of Engineering, 2019, 41(5): 557-572. doi: 10.13374/j.issn2095-9389.2019.05.002

中錳鋼的研究進展與前景

doi: 10.13374/j.issn2095-9389.2019.05.002
基金項目: 

國家自然科學基金面上資助項目 51571029

寶武鋼鐵聯合研究基金資助項目 U1760203

寶武鋼鐵聯合研究基金資助項目 U1660104

詳細信息
    通訊作者:

    李金許, E-mail: Jxli65@ustb.edu.cn

  • 中圖分類號: TG142.71

Research progress and prospect of medium manganese steel

More Information
  • 摘要: 總結了國內外中錳鋼研究現狀, 對文獻中中錳鋼的成分設計、成型工藝、熱處理工藝、組織性能調控等進行匯總分析, 得到了合金元素、成型工藝、微觀組織結構和熱處理對力學性能的影響規律, 并對中錳鋼的性能例如lüders帶和PLC帶對加工硬化率的影響、氫致延遲開裂性能給予了重點關注和討論; 同時提出借鑒第二代先進高強鋼(純奧氏體相)"層錯能"這一控制形變模式的概念, 對中錳鋼中奧氏體相的形變模式提出預測; 最后對目前中錳鋼研究的爭議問題、發展前景及未來可能面對的問題進行闡述.

     

  • 圖  1  中錳鋼性能關系統計(數據來源于表 1). (a) 延伸率-強度關系; (b) 強塑積-奧氏體體積分數關系; (c) 強塑積-抗拉強度關系: (d) 強塑積-延伸率關系

    Figure  1.  Relation between the mechanical properties of medium Mn steels(data from Table 1): (a) elongation vs tensile strength; (b) product of tensile strength and total elongation vs γR; (c) product of tensile strength and total elongation vs tensile strength; (d) product of tensile strength and total elongation vs elongation

    圖  2  中錳鋼性能與Mn含量的關系(數據來源于表 1). (a) 抗拉強度-Mn質量分數; (b) 延伸率-Mn質量分數; (c) 奧氏體體積分數-Mn質量分數; (d) 強塑積-Mn質量分數

    Figure  2.  Relations between mechanical properties and Mn content of medium Mn steels: (a) elongation vs manganese content; (b) elongation vs manganese content; (c) γR vs manganese content; (d) product of tensile strength and total elongation vs manganese content

    圖  3  Fe-9Mn冷軋450 ℃回火6 h試樣沿著單個位錯線性區域(①是垂直于位錯的元素含量分布,位錯處錳偏聚;②沿著位錯方向直徑2 nm圓柱體內Mn元素的分布)[31]

    Figure  3.  1D concentration analyses along cylindrical regions of interest of individual dislocations in Fe-9Mn alloy, 50% cold-rolled tempered at 450 ℃ for 6 h (① indicates region perpendicular to the marked concentration profiles and ② indicates region along the dislocations with cylinder diameters of 2 nm)[31]

    圖  4  中錳鋼性能與Al含量的關系(數據來源于表 1). (a) 強度-Al質量分數; (b) 延伸率-Al質量分數; (c) 奧氏體體積分數-Al質量分數; (d) 強塑積-Al質量分數

    Figure  4.  Relations between mechanical properties and Al content of medium Mn steels: (a) tensile strength vs aluminum content; (b) elongation vs aluminum content; (c) γR vs aluminum content; (d) product of tensile strength and total elongation vs aluminum content

    圖  5  幾種典型的中錳鋼金相組織. (a) 10Mn1.6Al冷軋中錳鋼(寶鋼); (b) 0.2C4.72Mn中錳鋼退火12 h軋制壓下量77.5%[9]; (c) 0.2C-1.6Al-6.1Mn中錳鋼625 ℃淬火組織[51]; (d) 0.2C-0.63Si-4.99Mn-3.03Al中錳鋼700 ℃退火1 h[24]

    Figure  5.  Typical SEM microstructures of the medium Mn steels: (a) 10Mn1.6Al cold-rolled medium Mn steel (Baosteel); (b) 0.2C4.72Mn medium Mn steel annealed at 650 ℃ for 12 h and rolled at 650 ℃ with thickness reduction of 77.5%[9]; (c) 0.2C-1.6Al-6.1Mn medium Mn steel quenched at 625 ℃[51]; (d) 0.2C-0.63Si-4.99Mn-3.03Al medium Mn steel annealed at 700 ℃ for 60 min[24]

    圖  6  中錳鋼兩種典型加工熱處理工藝(α:鐵素體γ:奧氏體δ:高溫鐵素體). (a) 低鋁(無高溫鐵素體)中錳鋼臨界退火工藝圖; (b) 高鋁(含高溫鐵素體)熱軋中錳鋼淬火回火工藝圖

    Figure  6.  Typical process and heating treatments of medium Mn steels (α: ferrite, γ: austenite, δ: ferrite): (a) annealing process of lower aluminum (without δ-Fe) medium Mn steel; (b) quenching+tempering process of higher aluminum (with δ-Fe) hot-rolling medium Mn steel

    圖  7  Fe-10.1Mn-6.3Al-0.3C中錳鋼700、800、900和1000 ℃退火10 min, 拉伸速率10-4 s-1對應的工程應力-應變曲線(a)和應變硬化率-真應變曲線(b)[11]

    Figure  7.  Engineering stress vs strain (a) and strain hardening rate vs true strain (b) of Fe-10.1Mn-6.3Al-0.26C steel annealed at 700, 800, 900 and 1000 ℃ for 10 min at a strain rate of 10-4 s-1[11]

    圖  8  在Q&P中錳鋼馬氏體板條之間薄膜奧氏體的Mn, Cr, Si和C元素分布,右圖為α′和γ界面處放大圖(γ和α′分別代表殘余奧氏體和馬氏體)[60]

    Figure  8.  Mn, Cr, Si, and C concentration profiles of film-like austenite in Q&P-processed medium Mn steel, the right picture is the magnify of the interface of α′ and γ in the left picture (γ and α′ represent retained austenite and martensite, respectively)[60]

    圖  9  Fe-7Mn-0.1C-0.5Si熱軋空拉(HRA), 冷軋空拉(CRA),熱軋預充氫(HRAH)和冷軋預充氫(CRAH)工程應力-應變曲線[64]

    Figure  9.  Engineering stress-strain curves of H-uncharged HRA and CRA specimens and H-charged HRAH and CRAH specimens of Fe-7Mn-0.1C-0.5Si medium Mn steel[64]

    圖  10  中錳鋼M7B預充氫慢拉伸應力-應變曲線(十字頭位移)圖

    Figure  10.  Engineering stress-strain curves(crosshead displacement) of H-charged M7B

    圖  11  M7B鋼在不同預應變條件下σ/σ0tc關系曲線

    Figure  11.  M7B with different pre-strain degrees σ/σ0 vs tc

    圖  12  Mn含量與晶粒尺寸對Fe-Mn合金層錯能的影響[72]

    Figure  12.  Variation of the SFE of γ with Mn content in Fe-Mn alloys having different austenite grain sizes[72]

    表  1  不同成分中錳鋼工藝與力學性能

    Table  1.   Processes and mechanical properties of medium Mn steel with different elemental compositions

    序號 成分 工藝 屈服強度/MPa 抗拉強度/MPa 延伸率/% 強塑積/(GPa·%) γR/% 參考文獻
    1 Fe-0.17C-6.6Mn-1.1Al-0.05Nb-0.22Mo-0.03N CR+IA 1082 1472 26 38.3 39 [3]
    2 Fe-0.2C-5Mn F+IA 650 1150 35 40 40 [4]
    3 Fe-0.18C-11Mn-3.8Al CR+IA+Q 727 998 67 66.9 63 [5]
    4 Fe-0.2C-11Mn-2Al HR+QT 1400 32 44.8 82 [6]
    5 Fe-0.2C-11Mn-4Al HR+QT 890 40 35.6 72 [6]
    6 Fe-0.2C-11Mn-6Al HR+QT 520 670 65 43.6 46 [6]
    7 Fe-0.2C-12.4Mn-0.9Si-5.2Al CR+IA 543 760 45 34.2 47.3 [7]
    8 Fe-0.23C-8.1Mn-5.3Al CR+IA 561 949 54 51.2 39.5 [7]
    9 Fe-11Mn-3.8Al-0.18C HR+QT 1201 34.6 41.6 65 [8]
    10 Fe-0.2C-5Mn F+WR 1130 1296 29 37.6 34 [9]
    11 Fe-0.2C-5Mn F+IA 620 1015 39.3 39.8 36 [10]
    12 Fe-10.1Mn-6.3Al-0.26C HR+IA 600 808 43 34.7 43 [11]
    13 Fe-0.2C-5Mn F+IA 960 45 43.2 34 [12]
    14 Fe-0.18C-10.62Mn-4.06Al-0.03Nb HR+QT 587 1012 48 48.6 78 [13]
    15 Fe-8Mn-0.4C-3Al-2Si-0.2V HR+IA 950 1100 46 50.6 [14]
    16 Fe-10Mn-0.2C HR+QT 700 1100 40 44 34 [15]
    17 Fe-0.2C-6Mn-3.2Al HR+QT 942 35.4 33.3 33 [16]
    18 Fe-0.2C-6Mn-1.6Al HR+QT 1040 40.8 42.4 58 [16]
    19 Fe-0.2C-6Mn-1.6Al CR+QT 1000 1060 47 49.8 75 [17]
    20 Fe-7.9Mn-0.14Si-0.05Al-0.07C WR+IA 910 1600 29 46.4 37 [18]
    21 Fe-0.1C-5Mn-2Si WR+Q+IA 1150 29 33.4 [19]
    22 Fe-0.18C-11Mn-3.8Al CR+Q 650 899 70 62.9 66 [20]
    23 Fe-0.16C-6.57Mn-1.1Al-0.05Nb-0.22Mo-0.03N CR+IA 1138 1224 33 40.4 30 [21]
    24 Fe-0.18C-6.4Mn-2.8Al-0.1V HR+IA 752 52.7 39.6 33 [22]
    25 Fe-0.2C-10.3Mn-2.9Al CR+Q 1560 26 40.6 46.7 [23]
    26 Fe-0.20C-4.99Mn-0.63Si-3.03Al HR+IA 922 61 56.2 32 [24]
    27 Fe-0.3C-6.0Mn-1.5Si-3.0Al CR+IA 1131 58 65.6 50 [25]
    28 Fe-0.1C-5Mn CR+IA 641 722 47.75 34.5 [26]
    29 Fe-0.1C-5Mn CR+IA 730 830 36.5 30.3 10 [26]
    30 Fe-7Mn-0.14C-0.23Si CR+IA 782 1012 42.3 42.8 31 [27]
    31 Fe-0.2C-10Mn-4Al HR+QT 635.7 889.6 79.6 70.8 51 *
    32 Fe-0.2C-10Mn-2Al HR+QT 449.0 1681.3 22.4 37.7 *
    33 Fe-0.2C-6Mn-3Al-0.58Si HR+IA 650.2 855 68.1 58.2 33.3 *
    34 Fe-0.2C-10Mn-2Al WR+IA+CR+T 1101.4 1332.9 33.0 44.0 *
    35 Fe-0.47C-10Mn-2Al-0.7V WR+IA+CR+T 2200 2200 16 35.2 15 [28]
    36 Fe-9Mn-3Ni-1.4Al-0.01C HR+IA 900 33.5 30.2 [29]
    37 Fe-9Mn-0.05C CR+IA 1060 1193 25 29.8 37 [30]
    38 Fe-8.46Mn-0.0075C CR+IA 820 84 68.9 [31]
    注:γR代表殘余奧氏體體積分數;HR代表熱軋;CR代表冷軋;Q代表淬火;T代表回火;IA代表臨界區退火;F代表鍛造;WR代表溫軋;*代表本實驗室正在進展的工作;△代表機械性能數據為原文曲線讀取.
    下載: 導出CSV

    表  2  M7B鋼在不同預應變條件下應力門檻值與臨界氫濃度關系

    Table  2.   Stress threshold vs critical H concentration of M7B under different pre-strain degrees

    預應變量 殘奧體積分數/% 歸一化門檻應力值,σ/σ0 門檻應力,σHIC/MPa 門檻應力下氫質量分數,C0/10-6
    0 23.2 0.62 626 255.2
    0.05 12.2 0.18 184 102.1
    0.15 7.2 0.16 153 75.4
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Gr?ssel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast, 2000, 16(10-11): 1391 doi: 10.1016/S0749-6419(00)00015-2
    [2] Lee Y K, Han J. Current opinion in medium manganese steel. Mater Sci Technol, 2015, 31(7): 843 doi: 10.1179/1743284714Y.0000000722
    [3] Cai M H, Zhu W J, Stanford N, et al. Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy. Mater Sci Eng A, 2016, 653: 35 doi: 10.1016/j.msea.2015.11.103
    [4] Wang C, Cao W Q, Shi J, et al. Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel. Mater Sci Eng A, 2013, 562: 89 doi: 10.1016/j.msea.2012.11.044
    [5] Cai Z H, Ding H, Xue X, et al. Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength-high ductility combination transformation-induced plasticity steel. Scripta Mater, 2013, 68(11): 865 doi: 10.1016/j.scriptamat.2013.02.010
    [6] Cai Z H, Cai B, Ding H, et al. Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content. Mater Sci Eng A, 2016, 676: 263 doi: 10.1016/j.msea.2016.08.119
    [7] Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low-density steel containing 5mass% aluminum. Scripta Mater, 2013, 68(6): 365 doi: 10.1016/j.scriptamat.2012.09.030
    [8] Cai Z H, Ding H, Xue X, et al. Microstructural evolution and mechanical properties of hot-rolled 11% manganese TRIP steel. Mater Sci Eng A, 2013, 560: 388 doi: 10.1016/j.msea.2012.09.083
    [9] Zhang R, Cao W Q, Peng Z J, et al. Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel. Mater Sci Eng A, 2013, 583: 84 doi: 10.1016/j.msea.2013.06.067
    [10] Xu H F, Zhao J, Cao W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn). Mater Sci Eng A, 2012, 532: 435 doi: 10.1016/j.msea.2011.11.009
    [11] Lee C Y, Jeong J, Han J, et al. Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite. Acta Mater, 2015, 84: 1 doi: 10.1016/j.actamat.2014.10.032
    [12] Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing. Mater Sci Eng A, 2011, 528(22-23): 6661 doi: 10.1016/j.msea.2011.05.039
    [13] Cai Z H, Ding H, Kamoutsi H, et al. Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel. Mater Sci Eng A, 2016, 654: 359 doi: 10.1016/j.msea.2015.12.057
    [14] Lee S, De Cooman B C. Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel. Steel Res Int, 2015, 86(10): 1170 doi: 10.1002/srin.201500038
    [15] Heo Y U, Suh D W, Lee H C. Fabrication of an ultrafine-grained structure by a compositional pinning technique. Acta Mater, 2014, 77: 236 doi: 10.1016/j.actamat.2014.05.057
    [16] Li Z C, Ding H, Cai Z H. Mechanical properties and austenite stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel. Mater Sci Eng A, 2015, 639: 559 doi: 10.1016/j.msea.2015.05.061
    [17] Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands. Mater Sci Eng A, 2017, 679: 230 doi: 10.1016/j.msea.2016.10.042
    [18] Zhao X M, Shen Y F, Qiu L N, et al. Effects of intercritical annealing temperature on mechanical properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C steel. Materials, 2014, 7(12): 7891 doi: 10.3390/ma7127891
    [19] Hanamura T, Torizuka S, Sunahara A, et al. Excellent total mechanical-properties-balance of 5% Mn, 30000 MPa% steel. ISIJ Int, 2011, 51(4): 685 doi: 10.2355/isijinternational.51.685
    [20] Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater, 2015, 84: 229 doi: 10.1016/j.actamat.2014.10.052
    [21] Cai M H, Li Z, Chao Q, et al. A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and moderate ductility. Metall Mater Trans A, 2014, 45(12): 5624 doi: 10.1007/s11661-014-2504-x
    [22] Xu Y B, Hu Z P, Zou Y, et al. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite. Mater Sci Eng A, 2017, 688: 40 doi: 10.1016/j.msea.2017.01.063
    [23] Sun B H, Vanderesse N, Fazeli F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel. Scripta Mater, 2017, 133: 9 doi: 10.1016/j.scriptamat.2017.01.022
    [24] Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum. Mater Sci Eng A, 2017, 682: 45 doi: 10.1016/j.msea.2016.11.036
    [25] Lee S, Lee K, De Cooman B C. Observation of the TWIP + TRIP plasticity-enhancement mechanism in Al-added 6 wt pct medium Mn steel. Metall Mater Trans A, 2015, 46(6): 2356 doi: 10.1007/s11661-015-2854-z
    [26] Hu J, Cao W Q, Wang C Y, et al. Phase transformation behavior of cold rolled 0.1C-5Mn steel during heating process studied by differential scanning calorimetry. Mater Sci Eng A, 2015, 636: 108 doi: 10.1016/j.msea.2015.03.080
    [27] Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Chatelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater, 2017, 124: 17 doi: 10.1016/j.actamat.2016.10.069
    [28] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science, 2017, 357(6355): 1029 doi: 10.1126/science.aan0177
    [29] Wang M M, Tasan C C, Ponge D, et al. Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater, 2015, 85: 216 doi: 10.1016/j.actamat.2014.11.010
    [30] Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel. Acta Mater, 2014, 78: 369 doi: 10.1016/j.actamat.2014.07.005
    [31] da Silva A K, Leyson G, Kuzmina M, et al. Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: a correlative TEM-atom probe study combined with multiscale modelling. Acta Mater, 2017, 124: 305 doi: 10.1016/j.actamat.2016.11.013
    [32] Latypov M I, Shin S, De Cooman B C, et al. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP+TRIP steel. Acta Mater, 2016, 108: 219 doi: 10.1016/j.actamat.2016.02.001
    [33] Han J, da Silva A K, Ponge D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater, 2017, 122: 199 doi: 10.1016/j.actamat.2016.09.048
    [34] Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: Confined chemical and structural states at dislocations. Science, 2015, 349(6252): 1080 doi: 10.1126/science.aab2633
    [35] Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: example of a 9 wt. % medium Mn steel. Acta Mater, 2015, 86: 182 doi: 10.1016/j.actamat.2014.12.021
    [36] Chin K G, Kang C Y, Shin S Y, et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. Mater Sci Eng A, 2011, 528(6): 2922 doi: 10.1016/j.msea.2010.12.085
    [37] Ryu J H, Kim S K, Lee C S, et al. Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe-Mn-C steel. Proc R Soc A, 2013, 469(2149): 20120458 doi: 10.1098/rspa.2012.0458
    [38] Hong S, Shin S Y, Kim H S, et al. Effects of aluminum addition on tensile and cup forming properties of three twinning induced plasticity steels. Metall Mater Trans A, 2012, 43(6): 1870 doi: 10.1007/s11661-011-1007-2
    [39] Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum on the corrosion behavior of austenitic Fe-Mn-C TWIP steels in aqueous solutions and the related hydrogen absorption. Corros Sci, 2014, 83: 234 doi: 10.1016/j.corsci.2014.02.018
    [40] Park I J, Jeong K H, Jung J G, et al. The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe-18Mn-0.6C twinning-induced plasticity steels. Int J Hydrogen Energy, 2012, 37(12): 9925 doi: 10.1016/j.ijhydene.2012.03.100
    [41] Chun Y S, Park K T, Lee C S. Delayed static failure of twinning-induced plasticity steels. Scripta Mater, 2012, 66(12): 960 doi: 10.1016/j.scriptamat.2012.02.038
    [42] Ryu J H. Hydrogen Embrittlement in TRIP and TWIP Steel[Dissertation]. Pohang: Pohang University of Science and Technology, 2012
    [43] Leslie W C, Rauch G C. Precipitation of carbides in low-carbon Fe-Al-C alloys. Metall Trans A, 1978, 9(3): 343 doi: 10.1007/BF02646383
    [44] Suh D W, Park S J, Lee T H, et al. Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel. Metall Mater Trans A, 2010, 41(2): 397 doi: 10.1007/s11661-009-0124-7
    [45] Ryu J H, Kim D I, Kim H S, et al. Strain partitioning and mechanical stability of retained austenite. Scripta Mater, 2010, 63(3): 297 doi: 10.1016/j.scriptamat.2010.04.020
    [46] Yang F, Luo H W, Hu C D, et al. Effects of intercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel. Mater Sci Eng A, 2017, 685: 115 doi: 10.1016/j.msea.2016.12.119
    [47] Lee S, Estrin Y, De Cooman B C. Constitutive modeling of the mechanical properties of V-added medium manganese TRIP steel. Metall Mater Trans A, 2013, 44(7): 3136 doi: 10.1007/s11661-013-1648-4
    [48] Wu Y X. Research of Low Cycle Fatigue and Delayed Fracture Behavior of TWIP Steel[Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    吳彥欣. TWIP鋼的疲勞行為及延遲斷裂研究[學位論文]. 北京: 北京科技大學, 2015
    [49] Miller R L. Ultrafine-grained microstructures and mechanical properties of alloy steels. Metall Trans, 1972, 3(4): 905 doi: 10.1007/BF02647665
    [50] Chen J, Lü M Y, Liu Z Y, et al. Combination of ductility and toughness by the design of fine ferrite/tempered martensite-austenite microstructure in a low carbon medium manganese alloyed steel plate. Mater Sci Eng A, 2015, 648: 51 doi: 10.1016/j.msea.2015.09.032
    [51] Li Z C, Ding H, Misra R D K, et al. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments. Mater Sci Eng A, 2017, 682: 211 doi: 10.1016/j.msea.2016.11.048
    [52] Sun B H, Fazeli F, Scott C, et al. Critical role of strain partitioning and deformation twinning on cracking phenomenon occurring during cold rolling of two duplex medium manganese steels. Scripta Mater, 2017, 130: 49 doi: 10.1016/j.scriptamat.2016.11.009
    [53] Gibbs P J, De Moor E, Merwin M J, et al. Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel. Metall Mater Trans A, 2011, 42(12): 3691 doi: 10.1007/s11661-011-0687-y
    [54] Wang M M, Tasan C C, Ponge D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Mater, 2014, 79: 268 doi: 10.1016/j.actamat.2014.07.020
    [55] Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater, 2014, 65: 251 doi: 10.1016/j.actamat.2013.10.067
    [56] Han J, Lee Y K. The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels. Acta Mater, 2014, 67: 354 doi: 10.1016/j.actamat.2013.12.038
    [57] Gibbs P J, De Cooman B C, Brown D W, et al. Strain partitioning in ultra-fine grained medium-manganese transformation induced plasticity steel. Mater Sci Eng A, 2014, 609: 323 doi: 10.1016/j.msea.2014.03.120
    [58] Luo L B, Li W, Wang L, et al. Tensile behaviors and deformation mechanism of a medium Mn-TRIP steel at different temperatures. Mater Sci Eng A, 2017, 682: 698 doi: 10.1016/j.msea.2016.11.017
    [59] Speer J, Matlock D K, De Cooman B C, et al, Carbon partitioning into austenite after martensite transformation. Acta Mater, 2003, 51, 2611 doi: 10.1016/S1359-6454(03)00059-4
    [60] Seo E J, Cho L, De Cooman B C. Kinetics of the partitioning of carbon and substitutional alloying elements during quenching and partitioning (Q&P) processing of medium Mn steel. Acta Mater, 2016, 107: 354 doi: 10.1016/j.actamat.2016.01.059
    [61] Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel. Acta Mater, 2016, 113: 124 doi: 10.1016/j.actamat.2016.04.048
    [62] Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion. Beijing: Science Press, 2013

    褚武揚, 喬利杰, 李金許, 等. 氫脆和應力腐蝕. 北京: 科學出版社, 2013
    [63] Liu Q L, Zhou Q J, Venezuela J, et al. Hydrogen influence on some advanced high-strength steels. Corros Sci, 2017, 125: 114 doi: 10.1016/j.corsci.2017.06.012
    [64] Han J, Nam J H, Lee Y K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel. Acta Mater, 2016, 113: 1 doi: 10.1016/j.actamat.2016.04.038
    [65] Wang M M, Tasan C C, Koyama M, et al. Enhancing hydrogen embrittlement resistance of lath martensite by introducing nano-films of interlath austenite. Metall Mater Trans A, 2015, 46(9): 3797 doi: 10.1007/s11661-015-3009-y
    [66] Laureys A, Depover T, Petrov R, et al. Characterization of hydrogen induced cracking in TRIP-assisted steels. Int J Hydrogen Energy, 2015, 40(47): 16901 doi: 10.1016/j.ijhydene.2015.06.017
    [67] Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe-Mn-C TWIP steels. Corros Sci, 2014, 82: 218 doi: 10.1016/j.corsci.2014.01.022
    [68] Callahan M, Hubert O, Hild F, et al. Coincidence of strain-induced TRIP and propagative PLC bands in medium Mn steels. Mater Sci Eng A, 2017, 704: 391 doi: 10.1016/j.msea.2017.08.042
    [69] Jeong T K, Jung G, Lee K, et al. Selective oxidation of Al rich Fe-Mn-Al-C low density steels. Mater Sci Technol, 2014, 30(14): 1805 doi: 10.1179/1743284713Y.0000000485
    [70] Choi J Y, Hwang S W, Park K T. Twinning-induced plasticity aided high ductile duplex stainless steel. Metall Mater Trans A, 2013, 44(2): 597 doi: 10.1007/s11661-012-1579-5
    [71] Lehnhoff G R, Findley K O, De Cooman B C. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scripta Mater, 2014, 92: 19 doi: 10.1016/j.scriptamat.2014.07.019
    [72] Lee Y K, Choi C. Driving force for γ→ε, martensitic transformation and stacking fault energy of γ in Fe-Mn binary system. Metall Mater Trans A, 2000, 31(2): 355 doi: 10.1007/s11661-000-0271-3
    [73] Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation. Metall Trans A, 1975, 6(4): 791 doi: 10.1007/BF02672301
    [74] Aydin H, Jung I H, Essadiqi E, et al. Twinning and tripping in 10% Mn steels. Mater Sci Eng A, 2014, 591: 90 doi: 10.1016/j.msea.2013.10.088
    [75] Aydin H, Essadiqi E, Jung I H, et al. Development of 3rd generation AHSS with medium Mn content alloying compositions. Mater Sci Eng A, 2013, 564: 501 doi: 10.1016/j.msea.2012.11.113
    [76] Han J, Lee S J, Lee C Y, et al. The size effect of initial martensite constituents on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel. Mater Sci Eng A, 2015, 633: 9 doi: 10.1016/j.msea.2015.02.075
    [77] Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate. Mater Sci Eng A, 2016, 675: 153 doi: 10.1016/j.msea.2016.07.104
  • 加載中
圖(12) / 表(2)
計量
  • 文章訪問數:  2649
  • HTML全文瀏覽量:  1176
  • PDF下載量:  371
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-06-05
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回