<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

核殼結構復合吸波材料研究進展

黃威 魏世丞 梁義 王博 黃玉煒 王玉江 徐濱士

黃威, 魏世丞, 梁義, 王博, 黃玉煒, 王玉江, 徐濱士. 核殼結構復合吸波材料研究進展[J]. 工程科學學報, 2019, 41(5): 547-556. doi: 10.13374/j.issn2095-9389.2019.05.001
引用本文: 黃威, 魏世丞, 梁義, 王博, 黃玉煒, 王玉江, 徐濱士. 核殼結構復合吸波材料研究進展[J]. 工程科學學報, 2019, 41(5): 547-556. doi: 10.13374/j.issn2095-9389.2019.05.001
HUANG Wei, WEI Shi-cheng, LIANG Yi, WANG Bo, HUANG Yu-wei, WANG Yu-jiang, XU Bin-shi. Research progress of core-shell composite absorbing materials[J]. Chinese Journal of Engineering, 2019, 41(5): 547-556. doi: 10.13374/j.issn2095-9389.2019.05.001
Citation: HUANG Wei, WEI Shi-cheng, LIANG Yi, WANG Bo, HUANG Yu-wei, WANG Yu-jiang, XU Bin-shi. Research progress of core-shell composite absorbing materials[J]. Chinese Journal of Engineering, 2019, 41(5): 547-556. doi: 10.13374/j.issn2095-9389.2019.05.001

核殼結構復合吸波材料研究進展

doi: 10.13374/j.issn2095-9389.2019.05.001
詳細信息
    通訊作者:

    王玉江, E-mail: hitwyj@126.com

  • 中圖分類號: TB34

Research progress of core-shell composite absorbing materials

More Information
  • 摘要: 在綜述電磁波材料吸波工作原理的基礎上, 討論了核殼結構材料在吸波領域的優勢.重點介紹了近年來不同類型核殼結構復合吸波材料的研究進展, 主要包括鐵氧體型、磁性金屬微粉及其氧化物型、陶瓷型、導電聚合物型、碳系材料型等核殼結構復合吸波材料.同時對不同類型的核殼結構吸波材料的制備方法、組織結構和微波吸收性能進行了詳細的歸納評述.最后對核殼結構復合吸波材料的發展趨勢進行了展望, 主要包括多層核殼結構, yolk-shell結構以及與其他材料結構相復合的特殊結構, 為進一步研究核殼結構復合吸波材料提供參考.

     

  • 圖  1  C@MnO2電子顯微全息分析圖. (a) 原始透射電鏡圖; (b) 電子全息重構的電荷分布圖; (c) 全息圖框中區域放大圖[25]

    Figure  1.  Electron microscopic hologram of C@MnO2: (a) original TEM image; (b) charge distribution map reconstructed by electron holography; (c) enlarged view of the boxed region of the hologram[25]

    圖  2  Co@CoO復合材料反射曲線圖. (a) 無孔; (b) 有孔[37]

    Figure  2.  Reflection curves of Co@CoO composite: (a) nonporous; (b) porous[37]

    圖  3  Fe3O4@MnO2微觀形貌圖. (a) 蘑菇狀; (b) 蜂窩狀; (c) 花冠狀[39]

    Figure  3.  Morphology of Fe3O4@MnO2: (a) mushroom-like; (b) honeycomb-like; (c) corolla-like[39]

    圖  4  透射電鏡形貌. (a) CoFe2O4空心球; (b) CoFe2O4@CNTs [50]

    Figure  4.  TEM images: (a) CoFe2O4 hollow sphere; (b) CoFe2O4@CNTs [50]

    圖  5  Ni@SnO2@PPy合成示意圖[51]

    Figure  5.  Schematic illustration of formation process of Ni@SnO2@PPy composite[51]

    圖  6  Ni@Void@SnO2(Ni3Sn2)不同時間下的微觀形貌及形成過程. (a) 3 h; (b) 6 h; (c) 10 h; (d) 15 h; (e) Ni@Void@SnO2(Ni3Sn2)形成過程示意圖[54]

    Figure  6.  TEM images of Ni@Void@SnO2(Ni3Sn2) at different hydrothermal time and the formation process: (a) 3 h; (b) 6 h; (c) 10 h; (d) 15 h; (e) schematic diagram of the formation process of Ni@Void@SnO2(Ni3Sn2) [54]

    圖  7  Fe3O4@BaTiO3/RGO合成路線[56]

    Figure  7.  Schematic illustration of the synthesis process of Fe3O4@BaTiO3/RGO nanocomposites[56]

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xu J S, Zhou W C, Luo F, et al. Research progress on radar stealth technique and radar absorbing materials. Mater Rev, 2014, 28(5): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201409011.htm

    徐劍盛, 周萬城, 羅發, 等. 雷達波隱身技術及雷達吸波材料研究進展. 材料導報, 2014, 28(5): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201409011.htm
    [2] Liu Z H, Ban G D, Jiang Z Q, et al. Absorbing properties of nickalloy/iron package mica powder composite absorbing materials. J Comput Theor Nanosci, 2017, 14(4): 1794 doi: 10.1166/jctn.2017.6507
    [3] Wang H B, Liu S X, Huo J C, et al. Progress on inorganic wave-absorbing materials. Bull Chin Ceram Soc, 2008, 27(4): 754 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200804023.htm

    王海濱, 劉樹信, 霍冀川, 等. 無機吸波材料研究進展. 硅酸鹽通報, 2008, 27(4): 754 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200804023.htm
    [4] Hu X S, Shen Y, Wang L M, et al. Research progress of novel microwave absorbing materials. Carbon Tech, 2016, 35(2): 11 https://www.cnki.com.cn/Article/CJFDTOTAL-TSJS201602004.htm

    胡小賽, 沈勇, 王黎明, 等. 吸波材料研究新進展. 炭素技術, 2016, 35(2): 11 https://www.cnki.com.cn/Article/CJFDTOTAL-TSJS201602004.htm
    [5] Tian C H, Du Y C, Xu P, et al. Constructing uniform core-shell PPy@ PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces, 2015, 7(36): 20090 doi: 10.1021/acsami.5b05259
    [6] Zhou M, Zhang X, Wang L, et al. Enhanced microwave absorption performance of hollow α-MnO2 nanourchins. J Nanosci Nanotechnol, 2013, 13(2): 904 doi: 10.1166/jnn.2013.5958
    [7] Liu Q H, Xu X H, Xia W X, et al. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale, 2015, 7(5): 1736 doi: 10.1039/C4NR05547K
    [8] Yuan K P, Che R C, Cao Q, et al. Designed fabrication and characterization of three-dimensionally ordered arrays of core-shell magnetic mesoporous carbon microspheres. ACS Appl Mater Interfaces, 2015, 7(9): 5312 doi: 10.1021/am508683p
    [9] You W B, She W, Liu Z W, et al. High-temperature annealing of an iron microplate with excellent microwave absorption performance and its direct micromagnetic analysis by electron holography and Lorentz microscopy. J Mater Chem C, 2017, 5(24): 6047 doi: 10.1039/C7TC01544E
    [10] Duan W Y, Yin X W, Li Q, et al. A review of absorption properties in silicon-based polymer derived ceramics. J Eur Ceram Soc, 2016, 36(15): 3681 doi: 10.1016/j.jeurceramsoc.2016.02.002
    [11] Qin F, Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys, 2012, 111(6): 061301 doi: 10.1063/1.3688435
    [12] Ding D, Wang Y, Li X D, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon, 2017, 111: 722 doi: 10.1016/j.carbon.2016.10.059
    [13] Zhou C, Geng S, Xu X W, et al. Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon, 2016, 108: 234 doi: 10.1016/j.carbon.2016.07.015
    [14] Song W L, Zhang K L, Chen M J, et al. A universal permittivity-attenuation evaluation diagram for accelerating design of dielectric-based microwave absorption materials: A case of graphene-based composites. Carbon, 2017, 118: 86 doi: 10.1016/j.carbon.2017.03.016
    [15] Chylekt P. Light scattering by small particles in an absorbing medium. J Opt Soc Am, 1977, 67(4): 561 doi: 10.1364/JOSA.67.000561
    [16] Jánossy L. Classical and wave mechanical theory of Rayleigh scattering. Acta Phys Academiae Scientiarum Hungaricae, 1976, 41(1): 41 doi: 10.1007/BF03157429
    [17] Wagner P E. A constant-angle Mie scattering method (CAMS) for investigation of particle formation processes. J Colloid Interface Sci, 1985, 105(2): 456 doi: 10.1016/0021-9797(85)90319-4
    [18] Duan T, Yang Y S, Peng T J, et al. Review of progress in core-shell structural nanocomposite material. Mater Rev, 2009, 23(2): 19 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200903006.htm

    段濤, 楊玉山, 彭同江, 等. 核殼型納米復合材料的研究進展. 材料導報, 2009, 23(2): 19 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200903006.htm
    [19] Liu Y, Li Z Y, Yu X, et al. Design of metamaterial electromagnetic invisible wavelength transformer with arbitrary shape. Equip Environ Eng, 2016, 13(1): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201601019.htm

    劉冶, 李竹影, 俞翔, 等. 形狀任意的超材料電磁隱身波長變換器的設計. 裝備環境工程, 2016, 13(1): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201601019.htm
    [20] Liu Y, Li Z Y, Zhao L, et al. A design fundamental theory of elliptic cylindrical invisible cloak with non-singular electromagnetic tensors. Equip Environ Eng, 2015, 12(1): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201501002.htm

    劉冶, 李竹影, 趙林, 等. 一種無奇異參數橢圓柱形電磁隱身斗篷的設計基礎理論. 裝備環境工程, 2015, 12(1): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201501002.htm
    [21] Xu J, He F, Gai S L, et al. Nitrogen-enriched, double-shelled carbon/layered double hydroxide hollow microspheres for excellent electrochemical performance. Nanoscale, 2014, 6(18): 10887 doi: 10.1039/C4NR02756F
    [22] Tian C H, Du Y C, Cui C S, et al. Synthesis and microwave absorption enhancement of yolk-shell Fe3O4@C microspheres. J Mater Sci, 2017, 52(11): 6349 doi: 10.1007/s10853-017-0866-3
    [23] Ren F J, Yu H J, Wang L, et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption. RSC Adv, 2014, 4(28): 14419 doi: 10.1039/c3ra46989a
    [24] Quan B, Liang X H, Ji G B, et al. Dielectric polarization in electromagnetic wave absorption: review and perspective. J Alloys Compd, 2017, 728: 1065 doi: 10.1016/j.jallcom.2017.09.082
    [25] She W, Bi H, Wen Z W, et al. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@ α-MnO2 microspindles studied by electron holography. ACS Appl Mater Interfaces, 2016, 8(15): 9782 doi: 10.1021/acsami.6b00978
    [26] Liu X X, Wu Y P, Wu C, et al. Study on permittivity of composites with core-shell particle. Phys B Condens Matter, 2010, 405(8): 2014 doi: 10.1016/j.physb.2010.01.093
    [27] Qu Z M, Wang Q G, Qin S L, et al. Effective permeability of composites with core-shell particles. Mater Sci Technol, 2012, 20(3): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201203008.htm

    曲兆明, 王慶國, 秦思良, 等. 核殼粒子復合材料的等效磁導率. 材料科學與工藝, 2012, 20(3): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201203008.htm
    [28] Bergheul S, Otmane F, Azzaz M. Structural and microwave absorption properties of nanostructured Fe-Co alloys. Adv Powder Technol, 2012, 23(5): 580 doi: 10.1016/j.apt.2011.06.004
    [29] Lee C C, Cheng Y Y, Chang H Y, et al. Synthesis and electromagnetic wave absorption property of Ni-Ag alloy nanoparticles. J Alloys Compd, 2009, 480(2): 674 doi: 10.1016/j.jallcom.2009.02.017
    [30] Hari B, Fu W Y, Yang H B, et al. Preparation and properties of Fe3O4/Ni nanoparticles. Acta Mater Compos Sin, 2008, 25(5): 14 doi: 10.3321/j.issn:1000-3851.2008.05.003

    哈日巴拉, 付烏有, 楊海濱, 等. Fe3O4/Ni復合納米顆粒的制備及其微波吸收特性. 復合材料學報, 2008, 25(5): 14 doi: 10.3321/j.issn:1000-3851.2008.05.003
    [31] Drmota A, Koselj J, Drofenik M, et al. Electromagnetic wave absorption of polymeric nanocomposites based on ferrite with a spinel and hexagonal crystal structure. J Magn Magn Mater, 2012, 324(6): 1225 doi: 10.1016/j.jmmm.2011.11.015
    [32] Yu L, Wang J J, Xu B C, et al. Study on the preparation and properties of Co-Zn doped W-type barium ferrite hollow ceramic microsphere absorbing materials. J Synth Cryst, 2015, 44(9): 2490 doi: 10.3969/j.issn.1000-985X.2015.09.031

    俞梁, 王建江, 許寶才, 等. Co-Zn摻雜的W型鋇鐵氧體空心陶瓷微珠吸波材料的制備與性能研究. 人工晶體學報, 2015, 44(9): 2490 doi: 10.3969/j.issn.1000-985X.2015.09.031
    [33] Wang G Q, Chang Y F, Wang L F, et al. Synthesis, characterization and microwave absorption properties of Fe3O4/Co core/shell-type nanoparticles. Adv Powder Technol, 2012, 23(6): 861 doi: 10.1016/j.apt.2011.12.003
    [34] Wang X L, Bao X K, Guan Y Y, et al. Microwave absorption properties of submicro-composites of core-shell C/Co. Chin J Mater Res, 2017, 31(4): 241 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201704001.htm

    王曉磊, 包秀坤, 關銀燕, 等. C/Co核殼亞微米復合物的吸波性能. 材料研究學報, 2017, 31(4): 241 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201704001.htm
    [35] Yuan J, Yang H J, Hou Z L, et al. Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technol, 2013, 237: 309 doi: 10.1016/j.powtec.2012.12.020
    [36] Wang B C, Zhang J L, Wang T, et al. Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core-shell particles. J Alloys Compd, 2013, 567: 21 doi: 10.1016/j.jallcom.2013.03.028
    [37] Liu T, Pang Y, Zhu M, et al. Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale, 2014, 6(4): 2447 doi: 10.1039/c3nr05238a
    [38] Zhu Y B, Qing Y C, Jia S, et al. Microwave absorbing properties of SiO2 coated carbonyl iron particles. Mater Rev, 2010, 24(1): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201002006.htm

    朱云斌, 卿玉長, 賈舒, 等. SiO2包覆羰基鐵的微波吸收性能研究. 材料導報, 2010, 24(1): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201002006.htm
    [39] Qiao M T, Lei X F, Ma Y, et al. Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4 @MnO2 composite microspheres. Chem Eng J, 2016, 304: 552 doi: 10.1016/j.cej.2016.06.094
    [40] Liu J W, Che R C, Chen H J, et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small, 2012, 8(8): 1214 doi: 10.1002/smll.201102245
    [41] Zhang J, Liu W, Zhang T, et al. Research progress of conductive polymer composites for microwave absorption. Micronanoelectron Technol, 2018(2): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201802003.htm

    張捷, 劉偉, 張婷, 等. 導電聚合物基復合吸波材料的研究進展. 微納電子技術, 2018(2): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201802003.htm
    [42] Wang Y, Wang W, Zhu M F, et al. Electromagnetic wave absorption polyimide fabric prepared by coating with core-shell NiFe2O4@PANI nanoparticles. RSC Adv, 2017, 7(68): 42891 doi: 10.1039/C7RA08002F
    [43] Jing H X, Li Q L, Ye Y, et al. Synthesis and properties of carbonyl iron-polyaniline microwave absorption composites. J Funct Polym, 2012, 25(4): 393 https://www.cnki.com.cn/Article/CJFDTOTAL-GNGF201204012.htm

    景紅霞, 李巧玲, 葉云, 等. 羰基鐵-聚苯胺復合吸波材料的制備及性能. 功能高分子學報, 2012, 25(4): 393 https://www.cnki.com.cn/Article/CJFDTOTAL-GNGF201204012.htm
    [44] Yan L L, Wang X X, Zhao S C, et al. Highly efficient microwave absorption of magnetic nanospindle-conductive polymer hybrids by molecular layer deposition. ACS Appl Mater Interfaces, 2017, 9(12): 11116 doi: 10.1021/acsami.6b16864
    [45] Wang W, Wang C G, Guo Y, et al. Preparation and electromagnetic characteristic of novel carbon based composites. J Aeronautical Mater, 2012, 32(1): 63 doi: 10.3969/j.issn.1005-5053.2012.1.013

    王雯, 王成國, 郭宇, 等. 新型碳基復合吸波材料的制備及性能研究. 航空材料學報, 2012, 32(1): 63 doi: 10.3969/j.issn.1005-5053.2012.1.013
    [46] Du Y C, Liu W W, Qiang R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces, 2014, 6(15): 12997 doi: 10.1021/am502910d
    [47] Wan G P, Yu L, Peng X G, et al. Preparation and microwave absorption properties of uniform TiO2@C core-shell nanocrystals. RSC Adv, 2015, 5(94): 77443 doi: 10.1039/C5RA14344F
    [48] Zhuo J, Huang H, Ding A. Microwave absorbing properties of SiC@C core/shell nanoparticles prepared by arc discharge method. Ordnance Mater Sci Eng, 2016, 39(6): 78 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201606022.htm

    卓絕, 黃昊, 丁昂. 直流電弧法制備SiC@C核殼型納米粒子及吸波性能研究. 兵器材料科學與工程, 2016, 39(6): 78 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201606022.htm
    [49] Diao J X, Wang H. Synthesis of carbon nanotubes by decomposition of ethanol and its growth mechanism. Bull Chin Ceramic Soc, 2018, 37(1): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201801015.htm

    刁金香, 王惠. 乙醇裂解制備碳納米管及其生長機理研究. 硅酸鹽通報, 2018, 37(1): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201801015.htm
    [50] Zhang S L, Qi Z W, Zhao Y, et al. Core/shell structured composites of hollow spherical CoFe2O4 and CNTs as absorbing materials. J Alloys Compd, 2017, 694: 309 doi: 10.1016/j.jallcom.2016.09.324
    [51] Wang Y, Zhang W Z, Luo C Y, et al. Fabrication and high-performance microwave absorption of Ni@SnO2@PPy core-shell composite. Synth Met, 2016, 220: 347 doi: 10.1016/j.synthmet.2016.07.005
    [52] Yu M, Liang C Y, Liu M M, et al. Yolk-shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption. J Mater Chem C, 2014, 2(35): 7275 doi: 10.1039/C4TC01285B
    [53] Liu J W, Xu J J, Che R C, et al. Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem Eur J, 2013, 19(21): 6746 doi: 10.1002/chem.201203557
    [54] Zhao B, Guo X Q, Zhao W Y, et al. Facile synthesis of yolk-shell Ni@ void@ SnO2 (Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res, 2017, 10(1): 331 doi: 10.1007/s12274-016-1295-3
    [55] Liu J W, Cheng J, Che R C, et al. Double-shelled yolk-shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J Phys Chem C, 2013, 117(1): 489 doi: 10.1021/jp310898z
    [56] Peng Z, Jiang W, Wang Y P, et al. Synthesis and microwave absorption properties of Fe3O4@BaTiO3/reduced graphene oxide nanocomposites. J Mater Sci Mater Electron, 2016, 27(2): 1304 doi: 10.1007/s10854-015-3890-6
  • 加載中
圖(7)
計量
  • 文章訪問數:  1787
  • HTML全文瀏覽量:  719
  • PDF下載量:  67
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-11-21
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回