-
摘要: 在綜述電磁波材料吸波工作原理的基礎上, 討論了核殼結構材料在吸波領域的優勢.重點介紹了近年來不同類型核殼結構復合吸波材料的研究進展, 主要包括鐵氧體型、磁性金屬微粉及其氧化物型、陶瓷型、導電聚合物型、碳系材料型等核殼結構復合吸波材料.同時對不同類型的核殼結構吸波材料的制備方法、組織結構和微波吸收性能進行了詳細的歸納評述.最后對核殼結構復合吸波材料的發展趨勢進行了展望, 主要包括多層核殼結構, yolk-shell結構以及與其他材料結構相復合的特殊結構, 為進一步研究核殼結構復合吸波材料提供參考.Abstract: With the rapid development of anti-stealth technology and the iterative renewal of firepower destruction weapons, the battlefield survivability of modern weapons and equipment has been severely tested. In the modern warfare of over-the-horizon, radar detection technology is currently the most widely used method; therefore, reducing the radar echo signal is the most important factor to improve the stealth ability of weapon equipment. Generally, stealth technology is divided into structural stealth and material stealth. Reasonable shape structure design can reduce the radar cross section (RCS) value of a weapon equipment. However, due to the high cost of shape structure and the easy reduction of the comprehensive performance of equipment, there are many limitations in application. Because the stealth technology of materials is relatively simple and the design difficulty is relatively low, the research and application of stealth materials are popular and have been well explored. Although the traditional absorbing materials have the advantages of low cost, good flexibility, and easy processing, they also have the defects of high density, narrow working frequency band, and limited strength. Core-shell microwave absorber is a composite multiphase structure with a spherical particle as the core and one or more layers of heterogeneous materials coated on the outer surface. Because of its unique structure and excellent performance, it is a promising material to solve the existing problems. On the basis of reviewing the working principle of microwave absorbing materials, the advantages of core-shell structure materials in the field of microwave absorbing were discussed. This paper mainly introduced the research progress of different types of core-shell structure microwave absorbing materials explored in recent years as well as summarized and commented on their preparation methods, structure, and microwave absorbing properties; these materials are mainly based on ferrite, magnetic metal powder and its oxide, ceramic, conductive polymer, and carbon series materials. Finally, the development trend of core-shell structure mircrowave absorbing materials was predicted, including multi-layer core-shell structure, yolk-shell stucture and special structure combined with other structures, whisch can provide reference for futher study of core-shell shtucture composite absorbing materials.
-
Key words:
- core-shell /
- microwave absorption /
- structure /
- composite /
- property
-
圖 6 Ni@Void@SnO2(Ni3Sn2)不同時間下的微觀形貌及形成過程. (a) 3 h; (b) 6 h; (c) 10 h; (d) 15 h; (e) Ni@Void@SnO2(Ni3Sn2)形成過程示意圖[54]
Figure 6. TEM images of Ni@Void@SnO2(Ni3Sn2) at different hydrothermal time and the formation process: (a) 3 h; (b) 6 h; (c) 10 h; (d) 15 h; (e) schematic diagram of the formation process of Ni@Void@SnO2(Ni3Sn2) [54]
259luxu-164 -
參考文獻
[1] Xu J S, Zhou W C, Luo F, et al. Research progress on radar stealth technique and radar absorbing materials. Mater Rev, 2014, 28(5): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201409011.htm徐劍盛, 周萬城, 羅發, 等. 雷達波隱身技術及雷達吸波材料研究進展. 材料導報, 2014, 28(5): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201409011.htm [2] Liu Z H, Ban G D, Jiang Z Q, et al. Absorbing properties of nickalloy/iron package mica powder composite absorbing materials. J Comput Theor Nanosci, 2017, 14(4): 1794 doi: 10.1166/jctn.2017.6507 [3] Wang H B, Liu S X, Huo J C, et al. Progress on inorganic wave-absorbing materials. Bull Chin Ceram Soc, 2008, 27(4): 754 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200804023.htm王海濱, 劉樹信, 霍冀川, 等. 無機吸波材料研究進展. 硅酸鹽通報, 2008, 27(4): 754 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200804023.htm [4] Hu X S, Shen Y, Wang L M, et al. Research progress of novel microwave absorbing materials. Carbon Tech, 2016, 35(2): 11 https://www.cnki.com.cn/Article/CJFDTOTAL-TSJS201602004.htm胡小賽, 沈勇, 王黎明, 等. 吸波材料研究新進展. 炭素技術, 2016, 35(2): 11 https://www.cnki.com.cn/Article/CJFDTOTAL-TSJS201602004.htm [5] Tian C H, Du Y C, Xu P, et al. Constructing uniform core-shell PPy@ PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces, 2015, 7(36): 20090 doi: 10.1021/acsami.5b05259 [6] Zhou M, Zhang X, Wang L, et al. Enhanced microwave absorption performance of hollow α-MnO2 nanourchins. J Nanosci Nanotechnol, 2013, 13(2): 904 doi: 10.1166/jnn.2013.5958 [7] Liu Q H, Xu X H, Xia W X, et al. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale, 2015, 7(5): 1736 doi: 10.1039/C4NR05547K [8] Yuan K P, Che R C, Cao Q, et al. Designed fabrication and characterization of three-dimensionally ordered arrays of core-shell magnetic mesoporous carbon microspheres. ACS Appl Mater Interfaces, 2015, 7(9): 5312 doi: 10.1021/am508683p [9] You W B, She W, Liu Z W, et al. High-temperature annealing of an iron microplate with excellent microwave absorption performance and its direct micromagnetic analysis by electron holography and Lorentz microscopy. J Mater Chem C, 2017, 5(24): 6047 doi: 10.1039/C7TC01544E [10] Duan W Y, Yin X W, Li Q, et al. A review of absorption properties in silicon-based polymer derived ceramics. J Eur Ceram Soc, 2016, 36(15): 3681 doi: 10.1016/j.jeurceramsoc.2016.02.002 [11] Qin F, Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys, 2012, 111(6): 061301 doi: 10.1063/1.3688435 [12] Ding D, Wang Y, Li X D, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon, 2017, 111: 722 doi: 10.1016/j.carbon.2016.10.059 [13] Zhou C, Geng S, Xu X W, et al. Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon, 2016, 108: 234 doi: 10.1016/j.carbon.2016.07.015 [14] Song W L, Zhang K L, Chen M J, et al. A universal permittivity-attenuation evaluation diagram for accelerating design of dielectric-based microwave absorption materials: A case of graphene-based composites. Carbon, 2017, 118: 86 doi: 10.1016/j.carbon.2017.03.016 [15] Chylekt P. Light scattering by small particles in an absorbing medium. J Opt Soc Am, 1977, 67(4): 561 doi: 10.1364/JOSA.67.000561 [16] Jánossy L. Classical and wave mechanical theory of Rayleigh scattering. Acta Phys Academiae Scientiarum Hungaricae, 1976, 41(1): 41 doi: 10.1007/BF03157429 [17] Wagner P E. A constant-angle Mie scattering method (CAMS) for investigation of particle formation processes. J Colloid Interface Sci, 1985, 105(2): 456 doi: 10.1016/0021-9797(85)90319-4 [18] Duan T, Yang Y S, Peng T J, et al. Review of progress in core-shell structural nanocomposite material. Mater Rev, 2009, 23(2): 19 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200903006.htm段濤, 楊玉山, 彭同江, 等. 核殼型納米復合材料的研究進展. 材料導報, 2009, 23(2): 19 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200903006.htm [19] Liu Y, Li Z Y, Yu X, et al. Design of metamaterial electromagnetic invisible wavelength transformer with arbitrary shape. Equip Environ Eng, 2016, 13(1): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201601019.htm劉冶, 李竹影, 俞翔, 等. 形狀任意的超材料電磁隱身波長變換器的設計. 裝備環境工程, 2016, 13(1): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201601019.htm [20] Liu Y, Li Z Y, Zhao L, et al. A design fundamental theory of elliptic cylindrical invisible cloak with non-singular electromagnetic tensors. Equip Environ Eng, 2015, 12(1): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201501002.htm劉冶, 李竹影, 趙林, 等. 一種無奇異參數橢圓柱形電磁隱身斗篷的設計基礎理論. 裝備環境工程, 2015, 12(1): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201501002.htm [21] Xu J, He F, Gai S L, et al. Nitrogen-enriched, double-shelled carbon/layered double hydroxide hollow microspheres for excellent electrochemical performance. Nanoscale, 2014, 6(18): 10887 doi: 10.1039/C4NR02756F [22] Tian C H, Du Y C, Cui C S, et al. Synthesis and microwave absorption enhancement of yolk-shell Fe3O4@C microspheres. J Mater Sci, 2017, 52(11): 6349 doi: 10.1007/s10853-017-0866-3 [23] Ren F J, Yu H J, Wang L, et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption. RSC Adv, 2014, 4(28): 14419 doi: 10.1039/c3ra46989a [24] Quan B, Liang X H, Ji G B, et al. Dielectric polarization in electromagnetic wave absorption: review and perspective. J Alloys Compd, 2017, 728: 1065 doi: 10.1016/j.jallcom.2017.09.082 [25] She W, Bi H, Wen Z W, et al. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@ α-MnO2 microspindles studied by electron holography. ACS Appl Mater Interfaces, 2016, 8(15): 9782 doi: 10.1021/acsami.6b00978 [26] Liu X X, Wu Y P, Wu C, et al. Study on permittivity of composites with core-shell particle. Phys B Condens Matter, 2010, 405(8): 2014 doi: 10.1016/j.physb.2010.01.093 [27] Qu Z M, Wang Q G, Qin S L, et al. Effective permeability of composites with core-shell particles. Mater Sci Technol, 2012, 20(3): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201203008.htm曲兆明, 王慶國, 秦思良, 等. 核殼粒子復合材料的等效磁導率. 材料科學與工藝, 2012, 20(3): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201203008.htm [28] Bergheul S, Otmane F, Azzaz M. Structural and microwave absorption properties of nanostructured Fe-Co alloys. Adv Powder Technol, 2012, 23(5): 580 doi: 10.1016/j.apt.2011.06.004 [29] Lee C C, Cheng Y Y, Chang H Y, et al. Synthesis and electromagnetic wave absorption property of Ni-Ag alloy nanoparticles. J Alloys Compd, 2009, 480(2): 674 doi: 10.1016/j.jallcom.2009.02.017 [30] Hari B, Fu W Y, Yang H B, et al. Preparation and properties of Fe3O4/Ni nanoparticles. Acta Mater Compos Sin, 2008, 25(5): 14 doi: 10.3321/j.issn:1000-3851.2008.05.003哈日巴拉, 付烏有, 楊海濱, 等. Fe3O4/Ni復合納米顆粒的制備及其微波吸收特性. 復合材料學報, 2008, 25(5): 14 doi: 10.3321/j.issn:1000-3851.2008.05.003 [31] Drmota A, Koselj J, Drofenik M, et al. Electromagnetic wave absorption of polymeric nanocomposites based on ferrite with a spinel and hexagonal crystal structure. J Magn Magn Mater, 2012, 324(6): 1225 doi: 10.1016/j.jmmm.2011.11.015 [32] Yu L, Wang J J, Xu B C, et al. Study on the preparation and properties of Co-Zn doped W-type barium ferrite hollow ceramic microsphere absorbing materials. J Synth Cryst, 2015, 44(9): 2490 doi: 10.3969/j.issn.1000-985X.2015.09.031俞梁, 王建江, 許寶才, 等. Co-Zn摻雜的W型鋇鐵氧體空心陶瓷微珠吸波材料的制備與性能研究. 人工晶體學報, 2015, 44(9): 2490 doi: 10.3969/j.issn.1000-985X.2015.09.031 [33] Wang G Q, Chang Y F, Wang L F, et al. Synthesis, characterization and microwave absorption properties of Fe3O4/Co core/shell-type nanoparticles. Adv Powder Technol, 2012, 23(6): 861 doi: 10.1016/j.apt.2011.12.003 [34] Wang X L, Bao X K, Guan Y Y, et al. Microwave absorption properties of submicro-composites of core-shell C/Co. Chin J Mater Res, 2017, 31(4): 241 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201704001.htm王曉磊, 包秀坤, 關銀燕, 等. C/Co核殼亞微米復合物的吸波性能. 材料研究學報, 2017, 31(4): 241 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201704001.htm [35] Yuan J, Yang H J, Hou Z L, et al. Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technol, 2013, 237: 309 doi: 10.1016/j.powtec.2012.12.020 [36] Wang B C, Zhang J L, Wang T, et al. Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core-shell particles. J Alloys Compd, 2013, 567: 21 doi: 10.1016/j.jallcom.2013.03.028 [37] Liu T, Pang Y, Zhu M, et al. Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale, 2014, 6(4): 2447 doi: 10.1039/c3nr05238a [38] Zhu Y B, Qing Y C, Jia S, et al. Microwave absorbing properties of SiO2 coated carbonyl iron particles. Mater Rev, 2010, 24(1): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201002006.htm朱云斌, 卿玉長, 賈舒, 等. SiO2包覆羰基鐵的微波吸收性能研究. 材料導報, 2010, 24(1): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201002006.htm [39] Qiao M T, Lei X F, Ma Y, et al. Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4 @MnO2 composite microspheres. Chem Eng J, 2016, 304: 552 doi: 10.1016/j.cej.2016.06.094 [40] Liu J W, Che R C, Chen H J, et al. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small, 2012, 8(8): 1214 doi: 10.1002/smll.201102245 [41] Zhang J, Liu W, Zhang T, et al. Research progress of conductive polymer composites for microwave absorption. Micronanoelectron Technol, 2018(2): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201802003.htm張捷, 劉偉, 張婷, 等. 導電聚合物基復合吸波材料的研究進展. 微納電子技術, 2018(2): 91 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ201802003.htm [42] Wang Y, Wang W, Zhu M F, et al. Electromagnetic wave absorption polyimide fabric prepared by coating with core-shell NiFe2O4@PANI nanoparticles. RSC Adv, 2017, 7(68): 42891 doi: 10.1039/C7RA08002F [43] Jing H X, Li Q L, Ye Y, et al. Synthesis and properties of carbonyl iron-polyaniline microwave absorption composites. J Funct Polym, 2012, 25(4): 393 https://www.cnki.com.cn/Article/CJFDTOTAL-GNGF201204012.htm景紅霞, 李巧玲, 葉云, 等. 羰基鐵-聚苯胺復合吸波材料的制備及性能. 功能高分子學報, 2012, 25(4): 393 https://www.cnki.com.cn/Article/CJFDTOTAL-GNGF201204012.htm [44] Yan L L, Wang X X, Zhao S C, et al. Highly efficient microwave absorption of magnetic nanospindle-conductive polymer hybrids by molecular layer deposition. ACS Appl Mater Interfaces, 2017, 9(12): 11116 doi: 10.1021/acsami.6b16864 [45] Wang W, Wang C G, Guo Y, et al. Preparation and electromagnetic characteristic of novel carbon based composites. J Aeronautical Mater, 2012, 32(1): 63 doi: 10.3969/j.issn.1005-5053.2012.1.013王雯, 王成國, 郭宇, 等. 新型碳基復合吸波材料的制備及性能研究. 航空材料學報, 2012, 32(1): 63 doi: 10.3969/j.issn.1005-5053.2012.1.013 [46] Du Y C, Liu W W, Qiang R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces, 2014, 6(15): 12997 doi: 10.1021/am502910d [47] Wan G P, Yu L, Peng X G, et al. Preparation and microwave absorption properties of uniform TiO2@C core-shell nanocrystals. RSC Adv, 2015, 5(94): 77443 doi: 10.1039/C5RA14344F [48] Zhuo J, Huang H, Ding A. Microwave absorbing properties of SiC@C core/shell nanoparticles prepared by arc discharge method. Ordnance Mater Sci Eng, 2016, 39(6): 78 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201606022.htm卓絕, 黃昊, 丁昂. 直流電弧法制備SiC@C核殼型納米粒子及吸波性能研究. 兵器材料科學與工程, 2016, 39(6): 78 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201606022.htm [49] Diao J X, Wang H. Synthesis of carbon nanotubes by decomposition of ethanol and its growth mechanism. Bull Chin Ceramic Soc, 2018, 37(1): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201801015.htm刁金香, 王惠. 乙醇裂解制備碳納米管及其生長機理研究. 硅酸鹽通報, 2018, 37(1): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201801015.htm [50] Zhang S L, Qi Z W, Zhao Y, et al. Core/shell structured composites of hollow spherical CoFe2O4 and CNTs as absorbing materials. J Alloys Compd, 2017, 694: 309 doi: 10.1016/j.jallcom.2016.09.324 [51] Wang Y, Zhang W Z, Luo C Y, et al. Fabrication and high-performance microwave absorption of Ni@SnO2@PPy core-shell composite. Synth Met, 2016, 220: 347 doi: 10.1016/j.synthmet.2016.07.005 [52] Yu M, Liang C Y, Liu M M, et al. Yolk-shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption. J Mater Chem C, 2014, 2(35): 7275 doi: 10.1039/C4TC01285B [53] Liu J W, Xu J J, Che R C, et al. Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem Eur J, 2013, 19(21): 6746 doi: 10.1002/chem.201203557 [54] Zhao B, Guo X Q, Zhao W Y, et al. Facile synthesis of yolk-shell Ni@ void@ SnO2 (Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res, 2017, 10(1): 331 doi: 10.1007/s12274-016-1295-3 [55] Liu J W, Cheng J, Che R C, et al. Double-shelled yolk-shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J Phys Chem C, 2013, 117(1): 489 doi: 10.1021/jp310898z [56] Peng Z, Jiang W, Wang Y P, et al. Synthesis and microwave absorption properties of Fe3O4@BaTiO3/reduced graphene oxide nanocomposites. J Mater Sci Mater Electron, 2016, 27(2): 1304 doi: 10.1007/s10854-015-3890-6 -