Redistribution of Mn between α-Fe matrix and θ cementite during long-term thermal aging in a low alloy steel
-
摘要: 利用原子探針層析技術研究了核反應堆壓力容器(RPV)模擬鋼調質處理后在370和400 ℃長期時效以及淬火后在400 ℃長期時效后Mn在α-Fe基體與滲碳體間重分布的特征。研究結果表明,在所有熱處理條件下,Mn均會從α-Fe基體向滲碳體內擴散,引起滲碳體內Mn濃度升高。其中淬火后直接在400 ℃時效條件下試樣中滲碳體內的Mn濃度最高。即使在400 ℃經過35000 h長時間時效,Mn在滲碳體內的濃度仍未達到平衡,需要進一步延長時效時間,這與Mn在400 ℃在α-Fe基體中擴散速率極其緩慢有關。此外,Mn在滲碳體內的分布也不均勻,在靠近α-Fe基體/滲碳體界面附近的滲碳體一側存在Mn的原子偏聚區,偏聚區Mn濃度隨時效溫度升高而增加。長時間時效后,Mn在兩相間重分布特征與Mn在滲碳體內擴散速率低于Mn在α-Fe基體中擴散速率有關。Abstract: The addition of certain amounts of Mn in steel has long been known to retard the growth and coarsening of cementite during tempering, which can increase the tempering resistance of carbon steels. It is now well-established that the retarding effect is inherently correlated with the partitioning of Mn between ferrite (α) matrix and cementite (θ). According to the equilibrium thermodynamics, Mn would diffuse from α-Fe matrix to θ cementite after the initial stage of tempering until equilibrium is reached. However, the manner in which Mn diffuses from α-Fe matrix to θ cementite is unclear, which is key in understanding the mechanism in which the partitioning of Mn can retard the growth and coarsening of cementite. Therefore, the measurement of Mn content across the α-Fe/θ interface is of importance to achieve this goal. In this study, the redistribution characteristics of Mn between α-Fe matrix and θ cementite after long-term aging at 370 or 400 °C with quenched–tempered or quenched samples of reactor pressure vessel model steel was investigated by atom probe tomography. Results show that Mn diffuses from the α-Fe matrix and enriches in the θ cementite under all heat treatment conditions. The concentration of Mn in cementite is the highest when the specimen is thermally aged directly after quenching. Moreover, Mn is not distributed uniformly within cementite after long-term aging at 400 °C for 35000 h. Instead, a Mn-segregated zone exists within cementite adjacent to the α-Fe/θ interface, with concentration increasing by aging temperature, which acts as a barrier to the coarsening of cementite by hindering the dissolution of small-sized cementite. The redistribution characteristics of Mn between the two phases is correlated with the difference of diffusivities in the α-Fe matrix and θ cementite during thermal aging, and the diffusivity of Mn in θ cementite is slower than that in α-Fe matrix.
-
圖 1 調質處理的試樣在370 ℃時效28800 h后C和Mn原子的分布圖(a),沿垂直于α/θ界面方向各合金元素成分的分布圖:Fe、C、Mn(b),Mo、Si、Ni、Cu(c),P(d)
Figure 1. Atom maps of C and Mn in a quenched-tempered sample after thermal aging at 370 ℃ for 28800 h (a), composition profiles of Fe, C, and Mn (b), Mo, Si, Ni, and Cu (c), and P (d) across the α/θ interface
表 1 A508-Ⅲ鋼的化學成分
Table 1. Nominal chemical composition of A508-III steel with high Cu content
Content/% Cu Ni Mn Si P C S Mo Fe Atomic fraction 0.53 0.81 1.60 0.77 0.03 1.00 0.011 0.31 Bal. Mass fraction 0.60 0.85 1.58 0.39 0.016 0.22 0.006 0.54 Bal. 259luxu-164 -
參考文獻
[1] Boyer H. Fundamentals of Ferrous Metallurgy. Ohio: Materials Engineering Institute, ASM International, 1981 [2] Totten G E. Steel Heat Treatment: Metallurgy and Technology. 2nd Ed. Portland: Taylor & Francis, 2007 [3] Grange R A, Hribal C R, Porter L F. Hardness of tempered martensite in carbon and low-alloy steels. Metall Trans A, 1977, 8(11): 1775 doi: 10.1007/BF02646882 [4] Miyamoto G, Oh J C, Hono K, et al. Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe-0.6 mass% C martensite. Acta Mater, 2007, 55(15): 5027 doi: 10.1016/j.actamat.2007.05.023 [5] Ghosh G, Olson G B. Precipitation of paraequilibrium cementite: experiments, and thermodynamic and kinetic modeling. Acta Mater, 2002, 50(8): 2099 doi: 10.1016/S1359-6454(02)00054-X [6] Babu S S, Hono K, Sakurai T. Atom probe field ion microscopy study of the partitioning of substitutional elements during tempering of a low-alloy steel martensite. Metall Mater Trans A, 1994, 25(3): 499 doi: 10.1007/BF02651591 [7] Gurry R W, Christakos J, Darken L. Size, manganese content, and curie point of carbides extracted from manganese steel. Trans ASM, 1961, 53: 187 [8] Thomson R C, Miller M K. Carbide precipitation in martensite during the early stages of tempering Cr- and Mo-containing low alloy steels. Acta Mater, 1998, 46(2): 2203 [9] Thomson R C, Miller M K. The partitioning of substitutional solute elements during the tempering of martensite in Cr and Mo containing steels. Appl Surf Sci, 1995, 87-88: 185 doi: 10.1016/0169-4332(94)00496-X [10] Sato T, Nishizawa T. Partitioning of alloying elements between ferrite and cementite. J Jpn Inst Met, 1955, 19: 385 doi: 10.2320/jinstmet1952.19.6_385 [11] Babu S S, Hono K, Sakurai T. APFIM studies on martensite tempering of Fe–C–Si–Mn low alloy steel. Appl Surf Sci, 1993, 67(1-4): 321 doi: 10.1016/0169-4332(93)90333-7 [12] Zhu K Y, Shi H, Chen H, et al. Effect of Al on martensite tempering: comparison with Si. J Mater Sci, 2018, 53(9): 6951 doi: 10.1007/s10853-018-2037-6 [13] Ande C K, Sluiter M H F. First-principles prediction of partitioning of alloying elements between cementite and ferrite. Acta Mater, 2010, 58(19): 6276 doi: 10.1016/j.actamat.2010.07.049 [14] Zhu C, Xiong X Y, Cerezo A, et al. Three-dimensional atom probe characterization of alloy element partitioning in cementite during tempering of alloy steel. Ultramicroscopy, 2007, 107(9): 808 doi: 10.1016/j.ultramic.2007.02.033 [15] Parsons D E, Malis T F, Boyd J D. Microalloying and precipitation in Cr–V rail steels. J Heat Treat, 1984, 3(3): 213 doi: 10.1007/BF02833263 [16] Ridley N, Malik M A, Lorimer G W. Partitioning and pearlite growth kinetics in an Ni–Cr eutectoid steel. Mater Charact, 1990, 25(1): 125 doi: 10.1016/1044-5803(90)90025-F [17] Lis J, Morgiel J, Lis A. The effect of Mn partitioning in Fe–Mn–Si alloy investigated with STEM-EDS techniques. Mater Chem Phys, 2003, 81(2-3): 466 doi: 10.1016/S0254-0584(03)00053-1 [18] Miller M K, Smith G D W. Atom probe microanalysis of a pearlitic steel. Met Sci, 1977, 11(7): 249 doi: 10.1179/msc.1977.11.7.249 [19] Lis J, Lis A, Kolan C. Manganese partitioning in low carbon manganese steel during annealing. Mater Charact, 2008, 59(8): 1021 doi: 10.1016/j.matchar.2007.08.020 [20] Ko M, Sakuma T, Nishizawa T. Effect of magnetism on the partition of alloying elements between cementite and ferrite. J Jpn Inst Met, 1976, 40(6): 593 doi: 10.2320/jinstmet1952.40.6_593 [21] Thomson R C, Miller M K. An atom probe study of cementite precipitation in autotempered martensite in an Fe?Mn?C alloy. Appl Surf Sci, 1996, 94-95: 313 doi: 10.1016/0169-4332(95)00392-4 [22] Miller M K, Forbes R G. Atom probe tomography. Mater Charact, 2009, 60(6): 461 doi: 10.1016/j.matchar.2009.02.007 [23] Xu G, Cai L L, Feng L, et al. Effect of the precipitation of Cu-rich clusters on the DBTT of RPV simulated steel. Acta Metall Sin, 2012, 48(6): 753 doi: 10.3724/SP.J.1037.2011.00668徐剛, 蔡琳玲, 馮柳, 等. 富Cu團簇的析出對RPV模擬鋼韌?脆轉變溫度的影響. 金屬學報, 2012, 48(6):753 doi: 10.3724/SP.J.1037.2011.00668 [24] Pareige P, Stoller R E, Russell K F, et al. Atom probe characterization of the microstructure of nuclear pressure vessel surveillance materials after neutron irradiation and after annealing treatments. J Nucl Mater, 1997, 249(2-3): 165 doi: 10.1016/S0022-3115(97)00215-8 [25] Meslin E, Radiguet B, Pareige P, et al. Kinetic of solute clustering in neutron irradiated ferritic model alloys and a French pressure vessel steel investigated by atom probe tomography. J Nucl Mater, 2010, 399(2-3): 137 doi: 10.1016/j.jnucmat.2009.11.012 [26] Miller M K. Atom Probe Tomography Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers, 2000: 25 [27] Li C, Smith G D W. The silicon effect in the tempering of martensite in steels. J Phys, 1984, 45: 397 [28] Zelenty J, Smith G D W, Wilford K, et al. Secondary precipitation within the cementite phase of reactor pressure vessel steels. Scripta Mater, 2016, 115: 118 doi: 10.1016/j.scriptamat.2015.12.039 [29] Gale W F, Totemeier T C. Smithells Metals Reference Book. 8th Ed. London: Butterworth Heinemann, 2004 -