<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

低碳低合金鋼時效過程中Mn在α-Fe與滲碳體間重分布特征

張植權 周邦新 王均安 劉文慶

張植權, 周邦新, 王均安, 劉文慶. 低碳低合金鋼時效過程中Mn在α-Fe與滲碳體間重分布特征[J]. 工程科學學報, 2020, 42(3): 340-347. doi: 10.13374/j.issn2095-9389.2019.04.24.005
引用本文: 張植權, 周邦新, 王均安, 劉文慶. 低碳低合金鋼時效過程中Mn在α-Fe與滲碳體間重分布特征[J]. 工程科學學報, 2020, 42(3): 340-347. doi: 10.13374/j.issn2095-9389.2019.04.24.005
ZHANG Zhi-quan, ZHOU Bang-xin, WANG Jun-an, LIU Wen-qing. Redistribution of Mn between α-Fe matrix and θ cementite during long-term thermal aging in a low alloy steel[J]. Chinese Journal of Engineering, 2020, 42(3): 340-347. doi: 10.13374/j.issn2095-9389.2019.04.24.005
Citation: ZHANG Zhi-quan, ZHOU Bang-xin, WANG Jun-an, LIU Wen-qing. Redistribution of Mn between α-Fe matrix and θ cementite during long-term thermal aging in a low alloy steel[J]. Chinese Journal of Engineering, 2020, 42(3): 340-347. doi: 10.13374/j.issn2095-9389.2019.04.24.005

低碳低合金鋼時效過程中Mn在α-Fe與滲碳體間重分布特征

doi: 10.13374/j.issn2095-9389.2019.04.24.005
基金項目: 國家重點基礎研究發展計劃(973計劃)資助項目(2011CB610503);國家自然科學基金重點資助項目(50931003);上海市重點學科建設資助項目(S30107)
詳細信息
    通訊作者:

    E-mail:zhoubx@shu.edu.cn

  • 中圖分類號: TG142.71

Redistribution of Mn between α-Fe matrix and θ cementite during long-term thermal aging in a low alloy steel

More Information
  • 摘要: 利用原子探針層析技術研究了核反應堆壓力容器(RPV)模擬鋼調質處理后在370和400 ℃長期時效以及淬火后在400 ℃長期時效后Mn在α-Fe基體與滲碳體間重分布的特征。研究結果表明,在所有熱處理條件下,Mn均會從α-Fe基體向滲碳體內擴散,引起滲碳體內Mn濃度升高。其中淬火后直接在400 ℃時效條件下試樣中滲碳體內的Mn濃度最高。即使在400 ℃經過35000 h長時間時效,Mn在滲碳體內的濃度仍未達到平衡,需要進一步延長時效時間,這與Mn在400 ℃在α-Fe基體中擴散速率極其緩慢有關。此外,Mn在滲碳體內的分布也不均勻,在靠近α-Fe基體/滲碳體界面附近的滲碳體一側存在Mn的原子偏聚區,偏聚區Mn濃度隨時效溫度升高而增加。長時間時效后,Mn在兩相間重分布特征與Mn在滲碳體內擴散速率低于Mn在α-Fe基體中擴散速率有關。

     

  • 圖  1  調質處理的試樣在370 ℃時效28800 h后C和Mn原子的分布圖(a),沿垂直于α/θ界面方向各合金元素成分的分布圖:Fe、C、Mn(b),Mo、Si、Ni、Cu(c),P(d)

    Figure  1.  Atom maps of C and Mn in a quenched-tempered sample after thermal aging at 370 ℃ for 28800 h (a), composition profiles of Fe, C, and Mn (b), Mo, Si, Ni, and Cu (c), and P (d) across the α/θ interface

    圖  2  調質處理的試樣在400 ℃時效35000 h后C和Mn原子的分布圖(a)和Fe、C、Mn沿垂直于α/θ界面方向成分的分布圖(b)

    Figure  2.  Atom maps of C and Mn in a quenched-tempered RPV steel sample after thermal aging at 400 ℃ for 35000 h (a) and composition profiles of Fe, C, and Mn across the α/θ interface (b)

    圖  3  淬火試樣在400 ℃時效35000 h后C和Mn原子分布圖(a)和Fe、C、Mn沿垂直于α/θ界面方向成分分布圖(b)

    Figure  3.  Atom maps of C and Mn in a quenched sample after thermal aging at 400 ℃ for 35000 h (a) and composition profiles of Fe, C, and Mn across the α/θ interface (b)

    表  1  A508-Ⅲ鋼的化學成分

    Table  1.   Nominal chemical composition of A508-III steel with high Cu content

    Content/%CuNiMnSiPCSMoFe
    Atomic fraction 0.53 0.81 1.60 0.77 0.03 1.00 0.011 0.31 Bal.
    Mass fraction 0.60 0.85 1.58 0.39 0.016 0.22 0.006 0.54 Bal.
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Boyer H. Fundamentals of Ferrous Metallurgy. Ohio: Materials Engineering Institute, ASM International, 1981
    [2] Totten G E. Steel Heat Treatment: Metallurgy and Technology. 2nd Ed. Portland: Taylor & Francis, 2007
    [3] Grange R A, Hribal C R, Porter L F. Hardness of tempered martensite in carbon and low-alloy steels. Metall Trans A, 1977, 8(11): 1775 doi: 10.1007/BF02646882
    [4] Miyamoto G, Oh J C, Hono K, et al. Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe-0.6 mass% C martensite. Acta Mater, 2007, 55(15): 5027 doi: 10.1016/j.actamat.2007.05.023
    [5] Ghosh G, Olson G B. Precipitation of paraequilibrium cementite: experiments, and thermodynamic and kinetic modeling. Acta Mater, 2002, 50(8): 2099 doi: 10.1016/S1359-6454(02)00054-X
    [6] Babu S S, Hono K, Sakurai T. Atom probe field ion microscopy study of the partitioning of substitutional elements during tempering of a low-alloy steel martensite. Metall Mater Trans A, 1994, 25(3): 499 doi: 10.1007/BF02651591
    [7] Gurry R W, Christakos J, Darken L. Size, manganese content, and curie point of carbides extracted from manganese steel. Trans ASM, 1961, 53: 187
    [8] Thomson R C, Miller M K. Carbide precipitation in martensite during the early stages of tempering Cr- and Mo-containing low alloy steels. Acta Mater, 1998, 46(2): 2203
    [9] Thomson R C, Miller M K. The partitioning of substitutional solute elements during the tempering of martensite in Cr and Mo containing steels. Appl Surf Sci, 1995, 87-88: 185 doi: 10.1016/0169-4332(94)00496-X
    [10] Sato T, Nishizawa T. Partitioning of alloying elements between ferrite and cementite. J Jpn Inst Met, 1955, 19: 385 doi: 10.2320/jinstmet1952.19.6_385
    [11] Babu S S, Hono K, Sakurai T. APFIM studies on martensite tempering of Fe–C–Si–Mn low alloy steel. Appl Surf Sci, 1993, 67(1-4): 321 doi: 10.1016/0169-4332(93)90333-7
    [12] Zhu K Y, Shi H, Chen H, et al. Effect of Al on martensite tempering: comparison with Si. J Mater Sci, 2018, 53(9): 6951 doi: 10.1007/s10853-018-2037-6
    [13] Ande C K, Sluiter M H F. First-principles prediction of partitioning of alloying elements between cementite and ferrite. Acta Mater, 2010, 58(19): 6276 doi: 10.1016/j.actamat.2010.07.049
    [14] Zhu C, Xiong X Y, Cerezo A, et al. Three-dimensional atom probe characterization of alloy element partitioning in cementite during tempering of alloy steel. Ultramicroscopy, 2007, 107(9): 808 doi: 10.1016/j.ultramic.2007.02.033
    [15] Parsons D E, Malis T F, Boyd J D. Microalloying and precipitation in Cr–V rail steels. J Heat Treat, 1984, 3(3): 213 doi: 10.1007/BF02833263
    [16] Ridley N, Malik M A, Lorimer G W. Partitioning and pearlite growth kinetics in an Ni–Cr eutectoid steel. Mater Charact, 1990, 25(1): 125 doi: 10.1016/1044-5803(90)90025-F
    [17] Lis J, Morgiel J, Lis A. The effect of Mn partitioning in Fe–Mn–Si alloy investigated with STEM-EDS techniques. Mater Chem Phys, 2003, 81(2-3): 466 doi: 10.1016/S0254-0584(03)00053-1
    [18] Miller M K, Smith G D W. Atom probe microanalysis of a pearlitic steel. Met Sci, 1977, 11(7): 249 doi: 10.1179/msc.1977.11.7.249
    [19] Lis J, Lis A, Kolan C. Manganese partitioning in low carbon manganese steel during annealing. Mater Charact, 2008, 59(8): 1021 doi: 10.1016/j.matchar.2007.08.020
    [20] Ko M, Sakuma T, Nishizawa T. Effect of magnetism on the partition of alloying elements between cementite and ferrite. J Jpn Inst Met, 1976, 40(6): 593 doi: 10.2320/jinstmet1952.40.6_593
    [21] Thomson R C, Miller M K. An atom probe study of cementite precipitation in autotempered martensite in an Fe?Mn?C alloy. Appl Surf Sci, 1996, 94-95: 313 doi: 10.1016/0169-4332(95)00392-4
    [22] Miller M K, Forbes R G. Atom probe tomography. Mater Charact, 2009, 60(6): 461 doi: 10.1016/j.matchar.2009.02.007
    [23] Xu G, Cai L L, Feng L, et al. Effect of the precipitation of Cu-rich clusters on the DBTT of RPV simulated steel. Acta Metall Sin, 2012, 48(6): 753 doi: 10.3724/SP.J.1037.2011.00668

    徐剛, 蔡琳玲, 馮柳, 等. 富Cu團簇的析出對RPV模擬鋼韌?脆轉變溫度的影響. 金屬學報, 2012, 48(6):753 doi: 10.3724/SP.J.1037.2011.00668
    [24] Pareige P, Stoller R E, Russell K F, et al. Atom probe characterization of the microstructure of nuclear pressure vessel surveillance materials after neutron irradiation and after annealing treatments. J Nucl Mater, 1997, 249(2-3): 165 doi: 10.1016/S0022-3115(97)00215-8
    [25] Meslin E, Radiguet B, Pareige P, et al. Kinetic of solute clustering in neutron irradiated ferritic model alloys and a French pressure vessel steel investigated by atom probe tomography. J Nucl Mater, 2010, 399(2-3): 137 doi: 10.1016/j.jnucmat.2009.11.012
    [26] Miller M K. Atom Probe Tomography Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers, 2000: 25
    [27] Li C, Smith G D W. The silicon effect in the tempering of martensite in steels. J Phys, 1984, 45: 397
    [28] Zelenty J, Smith G D W, Wilford K, et al. Secondary precipitation within the cementite phase of reactor pressure vessel steels. Scripta Mater, 2016, 115: 118 doi: 10.1016/j.scriptamat.2015.12.039
    [29] Gale W F, Totemeier T C. Smithells Metals Reference Book. 8th Ed. London: Butterworth Heinemann, 2004
  • 加載中
圖(3) / 表(1)
計量
  • 文章訪問數:  1105
  • HTML全文瀏覽量:  678
  • PDF下載量:  30
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-04-24
  • 刊出日期:  2020-03-01

目錄

    /

    返回文章
    返回