<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

典型釩礦冶煉廠區域土壤重金屬污染及陸生植物富集能力

邵慧琪 張又文 曲琛 厲文輝 趙妍珺 劉凝 蔡寒梅 吳傳東 劉杰民

邵慧琪, 張又文, 曲琛, 厲文輝, 趙妍珺, 劉凝, 蔡寒梅, 吳傳東, 劉杰民. 典型釩礦冶煉廠區域土壤重金屬污染及陸生植物富集能力[J]. 工程科學學報, 2020, 42(3): 302-312. doi: 10.13374/j.issn2095-9389.2019.04.23.001
引用本文: 邵慧琪, 張又文, 曲琛, 厲文輝, 趙妍珺, 劉凝, 蔡寒梅, 吳傳東, 劉杰民. 典型釩礦冶煉廠區域土壤重金屬污染及陸生植物富集能力[J]. 工程科學學報, 2020, 42(3): 302-312. doi: 10.13374/j.issn2095-9389.2019.04.23.001
SHAO Hui-qi, ZHANG You-wen, QU Chen, LI Wen-hui, ZHAO Yan-jun, LIU Ning, CAI Han-mei, WU Chuan-dong, LIU Jie-min. Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter area[J]. Chinese Journal of Engineering, 2020, 42(3): 302-312. doi: 10.13374/j.issn2095-9389.2019.04.23.001
Citation: SHAO Hui-qi, ZHANG You-wen, QU Chen, LI Wen-hui, ZHAO Yan-jun, LIU Ning, CAI Han-mei, WU Chuan-dong, LIU Jie-min. Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter area[J]. Chinese Journal of Engineering, 2020, 42(3): 302-312. doi: 10.13374/j.issn2095-9389.2019.04.23.001

典型釩礦冶煉廠區域土壤重金屬污染及陸生植物富集能力

doi: 10.13374/j.issn2095-9389.2019.04.23.001
基金項目: 國家重點研發計劃資助項目(2016YFC0700600,2016YFC0700603);國家水體污染控制與治理科技重大專項資助項目(2015ZX07205-003);國家自然科學基金資助項目(21878018);中央高校基本科研業務費專項資助項目(FRF-MP-19-012)
詳細信息
    通訊作者:

    E-mail:liujm@ustb.edu.cn

  • 中圖分類號: X53

Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter area

More Information
  • 摘要: 植物修復是土壤重金屬污染修復的重要手段。為了探明南水北調工程中線水源地土壤污染狀況并對其進行修復,本研究以湖北省朝北河和典型釩礦冶煉廠為對象,按季節采集該區域土壤(樣本量n = 14)和當地優勢陸生植物(樣本量n = 113),使用微波消解?電感耦合等離子體質譜(ICP?MS)測定V、Cr、As和Cd重金屬含量,根據內梅羅指數法綜合評價了土壤污染程度,評估了各種植物對四種重金屬的富集能力。結果表明,朝北河采樣點中排污口與河水交匯處土壤中重金屬Cd含量較高;釩礦冶煉廠原礦堆放區V超標近83倍,Cr、As和Cd重金屬超標兩倍以上,土壤受到嚴重污染;其他采樣點均受到不同程度的重金屬污染。植物重金屬富集能力和耐受性評價結果表明,鼠麴草、密葉飛蓬、一年蓬對四種重金屬耐受性極強,小蓬草、白茅、少花龍葵、野菊、白車軸草、稗是V、Cr和Cd的超富集植物,蜈蚣草、構樹對As的富集能力極強,野艾蒿對Cr和Cd的富集能力較強,丁香蓼和日本毛連菜分別對Cr和V具有較強的耐受性和富集特異性,委陵菜和垂序商陸對Cd具有較強的富集能力和特異性。五種優勢植物盆栽實驗表明,苧麻在復合金屬污染條件下耐受性最強,委陵菜富集能力最強。

     

  • 圖  1  采樣點分布示意圖. (a)朝北河;(b)冶煉廠

    Figure  1.  Sampling site distribution: (a) Chaobei River; (b) smeltery

    圖  2  采樣點土壤重金屬分布. (a)朝北河V和Cr;(b)朝北河As和Cd;(c)冶煉廠V和Cr;(d)冶煉廠As和Cd

    Figure  2.  Heavy metal concentration distribution in soil samples: (a) V and Cr in Chaobei River; (a) As and Cd in Chaobei River; (c) V and Cr in smeltery; (d) As and Cd in smeltery

    圖  3  當地優勢陸生植物種類統計. (a)科目分類;(b)生活型分類

    Figure  3.  Classifications of the local dominant terrestrial plants based on: (a) family; (b) life form

    圖  4  不同采樣季節植物種類統計. (a)科目分類;(b)生活型分類

    Figure  4.  Classifications of the local dominant terrestrial plants in four sampling seasons based on: (a) family; (b) life form

    圖  5  五種植物株高隨時間變化曲線圖

    Figure  5.  Plant height variation of five plants the local dominant terrestrial

    表  1  微波消解程序

    Table  1.   Operating conditions for samples in the microwave digestion system

    Digestion stepsTarget temperature/℃Heating-up time/minHolding time/minPower/W
    112055800
    215055800
    3180535800
    下載: 導出CSV

    表  2  采樣點土壤pH值

    Table  2.   Soil pH values in the sampling sites

    LocationsSampling sites
    1234567
    Chaobei River8.188.168.278.468.058.058.01
    Smeltery8.437.648.188.058.518.128.24
    下載: 導出CSV

    表  3  內梅羅指數法污染等級劃分標準

    Table  3.   Grading standards of pollution using the Nemerow index method

    P< 11~22~33~5> 5
    GradeCleanSlightly pollutedPollutedHeavily pollutedSeverely polluted
    下載: 導出CSV

    表  4  采樣點土壤重金屬污染程度

    Table  4.   Heavy metal pollution levels of soils collected from the sampling sites

    Sampling sitesVCrAsCd
    PiPollution degreePiPollution degreePiPollution degreePiPollution degree
    Chaobei RiverC10.13Clean0.05Clean0.16Clean0.28Clean
    C20.13Clean0.05Clean0.19Clean0.31Clean
    C30.13Clean0.04Clean0.19Clean0.23Clean
    C40.25Clean0.08Clean0.20Clean0.33Clean
    C50.36Clean0.10Clean0.22Clean1.17Slightly polluted
    C60.12Clean0.04Clean0.20Clean0.26Clean
    C70.32Clean0.06Clean0.19Clean0.22Clean
    SmelteryS10.49Clean0.12Clean0.56Clean0.44Clean
    S20.86Clean0.50Clean0.47Clean0.57Clean
    S30.75Clean0.18Clean0.61Clean0.57Clean
    S43.81Heavily polluted1.43Slightly polluted0.79Clean1.96Slightly polluted
    S52.26Polluted0.33Clean0.46Clean0.83Clean
    S683.85Severely polluted6.02Severely polluted2.26Polluted7.67Severely polluted
    S72.79Polluted0.41Clean0.41Clean0.95Clean
    下載: 導出CSV

    表  5  當地優勢陸生植物對V、Cr、As和Cd富集能力

    Table  5.   Enrichment capabilities of the local dominant terrestrial plants with respect to V、Cr、As and Cd

    PlantsVCrAsCdLife form
    Maximum concentration in plants/(mg·kg?1)BCFMaximum concentration in plants/(mg·kg?1)BCFMaximum concentration in plants/(mg·kg?1)BCFMaximum concentration in plants/(mg·kg?1)BCF
    Conyza canadensis548.133.73259.199.583.090.282.9512.11Annual herb
    Gnaphalium affine2404.220.18305.430.454.420.1841.624.05Annual herb
    Erigeron multifolius1075.680.08224.990.332.440.1053.395.20Perennial herb
    Erigeron annuus1046.060.08292.150.435.180.2121.622.10Annual herb
    Imperata cylindrica449.013.05142.736.542.620.282.286.72Perennial herb
    Taraxacum mongolicum580.803.9562.530.650.890.071.031.15Perennial herb
    Picris japonica256.790.5534.160.563.190.251.511.97Perennial herb
    Trifolium repens135.010.53123.644.007.660.880.672.76Perennial herb
    Echinochloa crusgalli131.901.98107.472.438.010.640.601.29Annual herb
    Solanum photeinocarpum121.632.40352.613.697.040.2610.2311.44Annual herb
    Pteris vittata13.940.41302.809.7994.2910.810.330.99Others
    Artemisia lavandulaefolia16.580.49102.145.981.080.100.752.97Perennial herb
    Setaria viridis56.450.26120.421.071.960.100.400.24Annual herb
    Ludwigia prostrata15.660.31141.964.590.840.100.260.48Annual herb
    Artemisia sacrorum7.320.4325.951.042.940.341.295.30Perennial herb
    Dendranthema indicum82.431.6377.652.511.430.150.661.24Perennial herb
    Broussonetia papyrifera16.140.4734.122.2178.296.960.211.04Arbor
    Arthraxon lanceolatus5.190.1515.671.020.360.030.190.97Perennial herb
    Cirsium setosum9.780.1546.551.051.280.100.971.30Perennial herb
    Daucus carota5.950.1717.401.131.190.110.492.42Annual herb
    Kalimeris integrifolia21.270.1373.821.801.310.131.041.28Perennial herb
    Picrasma quassioides3.470.2018.311.650.990.111.546.31Arbor
    Artemisia argyi6.150.2634.771.401.370.161.202.23Perennial herb
    Fargesia spathacea3.440.2055.121.780.370.040.080.30Shrub
    Populus × canadensis2.380.032.860.170.160.021.847.58Arbor
    Robinia pseudoacacia16.140.1114.090.520.460.040.601.31Arbor
    Potentilla chinensis78.450.1422.710.300.700.0620.3610.57Perennial herb
    Buddleja davidii1.450.0416.620.170.200.020.291.09Shrub
    Cayratia japonica2.090.128.500.770.470.050.552.28Perennial herb
    Artemisia scoparia79.830.6420.820.571.710.133.803.23Perennial herb
    Synurus deltoides12.020.718.720.790.350.040.281.16Perennial herb
    Salix babylonica0.460.031.010.090.140.022.128.72Arbor
    Grewia biloba3.930.084.840.160.180.020.671.25Shrub
    Conyza sumatrensis20.860.1225.480.270.700.030.991.11Annual herb
    Senecio scandens5.470.0352.820.550.760.030.951.06Perennial herb
    Phytolacca americana5.990.0413.920.150.320.018.909.95Perennial herb
    Kochia scoparia48.900.2326.920.241.410.071.721.03Annual herb
    Abutilon theophrasti7.270.1136.530.830.750.060.461.00Annual herb
    Rostellularia procumbens36.100.5419.630.441.230.101.032.22Annual herb
    Cynoglossum zeylanicum7.070.017.910.020.270.025.372.79Perennial herb
    Saussurea japonica18.200.3625.170.570.660.051.553.34Annual herb
    Saccharum arundinaceum20.700.045.610.090.190.020.060.08Perennial herb
    Coriaria nepalensis1.880.061.520.100.290.030.090.44Shrub
    Rubus coreanus5.590.162.750.180.620.060.090.43Shrub
    Arthraxon hispidus18.170.0944.220.503.640.280.390.45Annual herb
    Lespedeza daurica10.410.0122.400.230.730.060.270.27Shrub
    Indigofera bungeana12.300.0618.790.170.790.040.280.24Shrub
    Juncus effusus1.580.055.620.360.170.010.120.59Perennial herb
    Ziziphus jujuba3.050.0038.800.050.300.020.150.13Arbor
    Physocarpus amurensis17.210.1214.540.540.730.070.140.42Shrub
    Nicotiana tabacum0.810.052.980.270.260.030.090.35Annual herb
    Humulus scandens1.880.0416.880.550.360.040.120.22Annual herb
    Humulus scandens0.620.013.870.130.180.020.090.16Arbor
    Boehmeria nivea0.750.014.820.160.280.030.190.36Shrub
    Cyclosorus acuminatus2.300.0512.300.400.420.050.190.36Others
    Cunninghamia lanceolata0.600.014.970.160.190.020.110.21Arbor
    Rhus chinensis1.040.027.350.240.280.030.120.23Arbor
    Amygdalus persica0.630.018.260.190.160.010.070.16Arbor
    Rumex japonicus1.700.039.910.320.160.020.150.29Perennial herb
    Bidens frondosa0.500.013.380.110.230.030.110.21Annual herb
    Paulownia kawakamii0.330.013.900.040.060.000.050.06Arbor
    下載: 導出CSV

    表  6  五種植物富集系數測定結果

    Table  6.   Enrichment coefficients of the five local dominant terrestrial plants

    PlantsV Cr As Cd
    Concentration/
    (mg·kg?1)
    BCFConcentration/
    (mg·kg?1)
    BCFConcentration/
    (mg·kg?1)
    BCF Concentration/
    (mg·kg?1)
    BCF
    Trifolium repens59.480.12 561.361.87 398.116.63 3.600.72
    Potentilla chinensis868.811.74 2743.449.15 3772.0862.87 33.286.66
    Artemisia lavandulaefolia45.070.09 346.621.15 28.250.47 2.950.59
    Imperata cylindrica429.350.86 1046.523.49 246.374.11 1.860.37
    Boehmeria nivea65.590.13 180.710.61 1170.0619.50 3.960.79
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Ashraf S, Ali Q, Zahir Z A, et al. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf, 2019, 174: 714 doi: 10.1016/j.ecoenv.2019.02.068
    [2] Yang Z Y, Zhang J Z, Li C Y, et al. Research of soil heavy metal pollution and the remediation technology. J Green Sci Technol, 2018(22): 62

    楊志英, 張建珠, 李春苑, 等. 土壤重金屬污染及其修復技術研究現狀. 綠色科技, 2018(22):62
    [3] Li X B, Dong H H, Ren L X, et al. Effects of chelating agent combination technologies on soil contaminated by heavy metals. Res Environ Sci, http://kns.cnki.net/kcms/detail/11.1827.X.20190423.1606.003.html

    李曉寶, 董煥煥, 任麗霞, 等. 螯合劑修復重金屬污染土壤聯合技術研究進展. 環境科學研究, http://kns.cnki.net/kcms/detail/11.1827.X.20190423.1606.003.html
    [4] Wang X, Guo B, Wang X. Research progress on remediation technology of heavy metal contaminated soil. Coal Chem Ind, 2019, 42(1): 156

    王星, 郭斌, 王欣. 重金屬污染土壤修復技術研究進展. 煤炭與化工, 2019, 42(1):156
    [5] Fu G Y, Qiu Y Q, Song B Y, et al. Heavy metals enrichment characteristics of the dominant plants in lead-zinc slag yard along Dongjiang lake reservoir. J Cent South Univ Forest Technol, 2019, 39(4): 117

    付廣義, 邱亞群, 宋博宇, 等. 東江湖鉛鋅礦渣堆場優勢植物重金屬富集特征. 中南林業科技大學學報, 2019, 39(4):117
    [6] Wang Z H, Liu X Y, Qin H Y. Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. J Geochem Explor, 2019, 200: 159 doi: 10.1016/j.gexplo.2019.02.005
    [7] Zhu Y A, Huang D C, Liao X F, et al. A survey of plant resources in the contaminated soil of uranium mine. Jiangxi Sci, 2012, 30(5): 620 doi: 10.3969/j.issn.1001-3679.2012.05.018

    朱業安, 黃德超, 廖曉峰, 等. 鈾礦區污染土壤上植物資源調研. 江西科學, 2012, 30(5):620 doi: 10.3969/j.issn.1001-3679.2012.05.018
    [8] Feng N. Enrichment of herbaceous plants on soil heavy metal. Environ Sci Manage, 2015, 40(7): 138 doi: 10.3969/j.issn.1673-1212.2015.07.037

    豐楠. 草本植物對土壤重金屬的富集研究. 環境科學與管理, 2015, 40(7):138 doi: 10.3969/j.issn.1673-1212.2015.07.037
    [9] Kersten G, Majestic B, Quigley M. Phytoremediation of cadmium and lead-polluted watersheds. Ecotoxicol Environ Saf, 2017, 137: 225 doi: 10.1016/j.ecoenv.2016.12.001
    [10] Pilipovic A, Zalesny Jr. R S, Roncevic S, et al. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. J Environ Manage, 2019, 239: 352 doi: 10.1016/j.jenvman.2019.03.072
    [11] Zeng P, Guo Z H, Xiao X Y, et al. Effect of phytoremediation with Broussonetia papyrifera on the biological quality in soil contaminated with heavy metals. China Environ Sci, 2018, 38(7): 2639 doi: 10.3969/j.issn.1000-6923.2018.07.033

    曾鵬, 郭朝暉, 肖細元, 等. 構樹修復對重金屬污染土壤環境質量的影響. 中國環境科學, 2018, 38(7):2639 doi: 10.3969/j.issn.1000-6923.2018.07.033
    [12] Liu W, Shu W S, Lan C Y. Viola baoshanensis?A new hyperaccumulator for cadmium. Chin Sci Bull, 2003, 48(19): 2046 doi: 10.3321/j.issn:0023-074X.2003.19.009

    劉威, 束文圣, 藍崇鈺. 寶山堇菜(Viola baoshanensis)??一種新的鎘超富集植物. 科學通報, 2003, 48(19):2046 doi: 10.3321/j.issn:0023-074X.2003.19.009
    [13] Xie J Q, Lei M, Chen T B, et al. Phytoremediation of soil co-contaminated with arsenic, lead, zinc and copper using Pteris vittata L.: a field study. Acta Sci Circum, 2010, 30(1): 165

    謝景千, 雷梅, 陳同斌, 等. 蜈蚣草對污染土壤中As、Pb、Zn、Cu的原位去除效果. 環境科學學報, 2010, 30(1):165
    [14] Chandrasekhar C, Ray J G. Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Ecotoxicol Environ Saf, 2019, 171: 26 doi: 10.1016/j.ecoenv.2018.12.058
    [15] Mo F X. Study on the Feature of Heavy Metal Pollution and Phytoremediation in Three Gorges Reservoir[Dissertation]. Chongqing: Chongqing Jiaotong University, 2014

    莫福孝. 三峽庫區消落帶土壤重金屬污染特征及植物修復技術研究[學位論文]. 重慶: 重慶交通大學, 2014
    [16] Gao F J, Ju T N, Wu X, et al. Spatial variability and autocorrelation analysis of pH in a mollisol tillage area of Northeast China. Soils, 2018, 50(3): 566

    高鳳杰, 鞠鐵男, 吳嘯, 等. 黑土耕作層土壤pH空間變異及自相關分析. 土壤, 2018, 50(3):566
    [17] Zhu H, Bing H J, Wu Y H, et al. The spatial and vertical distribution of heavy metal contamination in sediments of the Three Gorges Reservoir determined by anti-seasonal flow regulation. Sci Total Environ, 2019, 664: 79 doi: 10.1016/j.scitotenv.2019.02.016
    [18] An Z Z, Chen T B, Lei M, et al. Tolerance of Pteris vittata L. to Pb, Cu and Zn. Acta Ecol Sin, 2003, 23(12): 2594 doi: 10.3321/j.issn:1000-0933.2003.12.013

    安志裝, 陳同斌, 雷梅, 等. 蜈蚣草耐鉛、銅、鋅毒性和修復能力的研究. 生態學報, 2003, 23(12):2594 doi: 10.3321/j.issn:1000-0933.2003.12.013
  • 加載中
圖(5) / 表(6)
計量
  • 文章訪問數:  1516
  • HTML全文瀏覽量:  1413
  • PDF下載量:  58
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-04-23
  • 刊出日期:  2020-03-01

目錄

    /

    返回文章
    返回