Analysis of heavy metal contamination in the soil and enrichment capabilities of terrestrial plants around a typical vanadium smelter area
-
摘要: 植物修復是土壤重金屬污染修復的重要手段。為了探明南水北調工程中線水源地土壤污染狀況并對其進行修復,本研究以湖北省朝北河和典型釩礦冶煉廠為對象,按季節采集該區域土壤(樣本量n = 14)和當地優勢陸生植物(樣本量n = 113),使用微波消解?電感耦合等離子體質譜(ICP?MS)測定V、Cr、As和Cd重金屬含量,根據內梅羅指數法綜合評價了土壤污染程度,評估了各種植物對四種重金屬的富集能力。結果表明,朝北河采樣點中排污口與河水交匯處土壤中重金屬Cd含量較高;釩礦冶煉廠原礦堆放區V超標近83倍,Cr、As和Cd重金屬超標兩倍以上,土壤受到嚴重污染;其他采樣點均受到不同程度的重金屬污染。植物重金屬富集能力和耐受性評價結果表明,鼠麴草、密葉飛蓬、一年蓬對四種重金屬耐受性極強,小蓬草、白茅、少花龍葵、野菊、白車軸草、稗是V、Cr和Cd的超富集植物,蜈蚣草、構樹對As的富集能力極強,野艾蒿對Cr和Cd的富集能力較強,丁香蓼和日本毛連菜分別對Cr和V具有較強的耐受性和富集特異性,委陵菜和垂序商陸對Cd具有較強的富集能力和特異性。五種優勢植物盆栽實驗表明,苧麻在復合金屬污染條件下耐受性最強,委陵菜富集能力最強。Abstract: Phytoremediation is an important means of soil heavy metal pollution remediation. In order to figure out the soil pollution status of the water source in the middle line of the South-to-North Water Transfer Project and repair it, soil samples (n = 14) and local dominant terrestrial plants (n = 113) were collected in typical areas around Chaobei River and the typical vanadium smelter in Hubei Province in four seasons. Microwave digestion–inductively coupled plasma mass spectrometry (ICP?MS) was applied to analyze the concentrations of vanadium (V), chromium (Cr), arsenic (As), and cadmium (Cd) in soils and plants. Soil pollution levels were evaluated on the basis of the Nemerow index method. The enrichment capabilities of plants for the four heavy metals were also analyzed. Results show that the heavy metal content of soil around the junction of the sewage outfall and the river is the highest among the seven sampling sites around Chaobei River. The concentration of V in the raw ore stacking area exceeds the limit by approximately 83 times and the concentrations of Cr, As, and Cd exceed the limit by approximately 2 times, which make the soil in the raw ore stacking area heavily contaminated. The soils in the six other sampling sites in the smelter are polluted in different degrees. The results of the evaluation of the enrichment and tolerance capabilities indicate that Gnaphalium affine, Erigeron multifolius, and Erigeron annuus have the highest tolerance capability for the four heavy metals. Conyza canadensis, Imperata cylindrica, Solanum photeinocarpum, Dendranthema indicum, Trifolium repens, and Echinochloa crusgalli are the hyperaccumulators for V, Cr, and Cd. The enrichment capabilities of Pteris vittata and Broussonetia papyrifera for As are extremely high. Moreover, Artemisia lavandulaefolia has a high enrichment capability for Cr and Cd, Ludwigia prostrata and Picris japonica have prominent tolerance and enrichment specificities for Cr and V, and Potentilla chinensis and Phytolacca americana have obvious enrichment capabilities for Cd specifically. The pot experiments of five local dominant terrestrial plants illustrate that, under the composite heavy metal contaminant conditions, Boehmeria nivea has the highest tolerance capability and Potentilla chinensis has the highest enrichment capability.
-
Key words:
- soil /
- heavy metal contaminant /
- hyperaccumulator /
- enrichment capability /
- tolerance capability
-
表 1 微波消解程序
Table 1. Operating conditions for samples in the microwave digestion system
Digestion steps Target temperature/℃ Heating-up time/min Holding time/min Power/W 1 120 5 5 800 2 150 5 5 800 3 180 5 35 800 表 2 采樣點土壤pH值
Table 2. Soil pH values in the sampling sites
Locations Sampling sites 1 2 3 4 5 6 7 Chaobei River 8.18 8.16 8.27 8.46 8.05 8.05 8.01 Smeltery 8.43 7.64 8.18 8.05 8.51 8.12 8.24 表 3 內梅羅指數法污染等級劃分標準
Table 3. Grading standards of pollution using the Nemerow index method
P < 1 1~2 2~3 3~5 > 5 Grade Clean Slightly polluted Polluted Heavily polluted Severely polluted 表 4 采樣點土壤重金屬污染程度
Table 4. Heavy metal pollution levels of soils collected from the sampling sites
Sampling sites V Cr As Cd Pi Pollution degree Pi Pollution degree Pi Pollution degree Pi Pollution degree Chaobei River C1 0.13 Clean 0.05 Clean 0.16 Clean 0.28 Clean C2 0.13 Clean 0.05 Clean 0.19 Clean 0.31 Clean C3 0.13 Clean 0.04 Clean 0.19 Clean 0.23 Clean C4 0.25 Clean 0.08 Clean 0.20 Clean 0.33 Clean C5 0.36 Clean 0.10 Clean 0.22 Clean 1.17 Slightly polluted C6 0.12 Clean 0.04 Clean 0.20 Clean 0.26 Clean C7 0.32 Clean 0.06 Clean 0.19 Clean 0.22 Clean Smeltery S1 0.49 Clean 0.12 Clean 0.56 Clean 0.44 Clean S2 0.86 Clean 0.50 Clean 0.47 Clean 0.57 Clean S3 0.75 Clean 0.18 Clean 0.61 Clean 0.57 Clean S4 3.81 Heavily polluted 1.43 Slightly polluted 0.79 Clean 1.96 Slightly polluted S5 2.26 Polluted 0.33 Clean 0.46 Clean 0.83 Clean S6 83.85 Severely polluted 6.02 Severely polluted 2.26 Polluted 7.67 Severely polluted S7 2.79 Polluted 0.41 Clean 0.41 Clean 0.95 Clean 表 5 當地優勢陸生植物對V、Cr、As和Cd富集能力
Table 5. Enrichment capabilities of the local dominant terrestrial plants with respect to V、Cr、As and Cd
Plants V Cr As Cd Life form Maximum concentration in plants/(mg·kg?1) BCF Maximum concentration in plants/(mg·kg?1) BCF Maximum concentration in plants/(mg·kg?1) BCF Maximum concentration in plants/(mg·kg?1) BCF Conyza canadensis 548.13 3.73 259.19 9.58 3.09 0.28 2.95 12.11 Annual herb Gnaphalium affine 2404.22 0.18 305.43 0.45 4.42 0.18 41.62 4.05 Annual herb Erigeron multifolius 1075.68 0.08 224.99 0.33 2.44 0.10 53.39 5.20 Perennial herb Erigeron annuus 1046.06 0.08 292.15 0.43 5.18 0.21 21.62 2.10 Annual herb Imperata cylindrica 449.01 3.05 142.73 6.54 2.62 0.28 2.28 6.72 Perennial herb Taraxacum mongolicum 580.80 3.95 62.53 0.65 0.89 0.07 1.03 1.15 Perennial herb Picris japonica 256.79 0.55 34.16 0.56 3.19 0.25 1.51 1.97 Perennial herb Trifolium repens 135.01 0.53 123.64 4.00 7.66 0.88 0.67 2.76 Perennial herb Echinochloa crusgalli 131.90 1.98 107.47 2.43 8.01 0.64 0.60 1.29 Annual herb Solanum photeinocarpum 121.63 2.40 352.61 3.69 7.04 0.26 10.23 11.44 Annual herb Pteris vittata 13.94 0.41 302.80 9.79 94.29 10.81 0.33 0.99 Others Artemisia lavandulaefolia 16.58 0.49 102.14 5.98 1.08 0.10 0.75 2.97 Perennial herb Setaria viridis 56.45 0.26 120.42 1.07 1.96 0.10 0.40 0.24 Annual herb Ludwigia prostrata 15.66 0.31 141.96 4.59 0.84 0.10 0.26 0.48 Annual herb Artemisia sacrorum 7.32 0.43 25.95 1.04 2.94 0.34 1.29 5.30 Perennial herb Dendranthema indicum 82.43 1.63 77.65 2.51 1.43 0.15 0.66 1.24 Perennial herb Broussonetia papyrifera 16.14 0.47 34.12 2.21 78.29 6.96 0.21 1.04 Arbor Arthraxon lanceolatus 5.19 0.15 15.67 1.02 0.36 0.03 0.19 0.97 Perennial herb Cirsium setosum 9.78 0.15 46.55 1.05 1.28 0.10 0.97 1.30 Perennial herb Daucus carota 5.95 0.17 17.40 1.13 1.19 0.11 0.49 2.42 Annual herb Kalimeris integrifolia 21.27 0.13 73.82 1.80 1.31 0.13 1.04 1.28 Perennial herb Picrasma quassioides 3.47 0.20 18.31 1.65 0.99 0.11 1.54 6.31 Arbor Artemisia argyi 6.15 0.26 34.77 1.40 1.37 0.16 1.20 2.23 Perennial herb Fargesia spathacea 3.44 0.20 55.12 1.78 0.37 0.04 0.08 0.30 Shrub Populus × canadensis 2.38 0.03 2.86 0.17 0.16 0.02 1.84 7.58 Arbor Robinia pseudoacacia 16.14 0.11 14.09 0.52 0.46 0.04 0.60 1.31 Arbor Potentilla chinensis 78.45 0.14 22.71 0.30 0.70 0.06 20.36 10.57 Perennial herb Buddleja davidii 1.45 0.04 16.62 0.17 0.20 0.02 0.29 1.09 Shrub Cayratia japonica 2.09 0.12 8.50 0.77 0.47 0.05 0.55 2.28 Perennial herb Artemisia scoparia 79.83 0.64 20.82 0.57 1.71 0.13 3.80 3.23 Perennial herb Synurus deltoides 12.02 0.71 8.72 0.79 0.35 0.04 0.28 1.16 Perennial herb Salix babylonica 0.46 0.03 1.01 0.09 0.14 0.02 2.12 8.72 Arbor Grewia biloba 3.93 0.08 4.84 0.16 0.18 0.02 0.67 1.25 Shrub Conyza sumatrensis 20.86 0.12 25.48 0.27 0.70 0.03 0.99 1.11 Annual herb Senecio scandens 5.47 0.03 52.82 0.55 0.76 0.03 0.95 1.06 Perennial herb Phytolacca americana 5.99 0.04 13.92 0.15 0.32 0.01 8.90 9.95 Perennial herb Kochia scoparia 48.90 0.23 26.92 0.24 1.41 0.07 1.72 1.03 Annual herb Abutilon theophrasti 7.27 0.11 36.53 0.83 0.75 0.06 0.46 1.00 Annual herb Rostellularia procumbens 36.10 0.54 19.63 0.44 1.23 0.10 1.03 2.22 Annual herb Cynoglossum zeylanicum 7.07 0.01 7.91 0.02 0.27 0.02 5.37 2.79 Perennial herb Saussurea japonica 18.20 0.36 25.17 0.57 0.66 0.05 1.55 3.34 Annual herb Saccharum arundinaceum 20.70 0.04 5.61 0.09 0.19 0.02 0.06 0.08 Perennial herb Coriaria nepalensis 1.88 0.06 1.52 0.10 0.29 0.03 0.09 0.44 Shrub Rubus coreanus 5.59 0.16 2.75 0.18 0.62 0.06 0.09 0.43 Shrub Arthraxon hispidus 18.17 0.09 44.22 0.50 3.64 0.28 0.39 0.45 Annual herb Lespedeza daurica 10.41 0.01 22.40 0.23 0.73 0.06 0.27 0.27 Shrub Indigofera bungeana 12.30 0.06 18.79 0.17 0.79 0.04 0.28 0.24 Shrub Juncus effusus 1.58 0.05 5.62 0.36 0.17 0.01 0.12 0.59 Perennial herb Ziziphus jujuba 3.05 0.003 8.80 0.05 0.30 0.02 0.15 0.13 Arbor Physocarpus amurensis 17.21 0.12 14.54 0.54 0.73 0.07 0.14 0.42 Shrub Nicotiana tabacum 0.81 0.05 2.98 0.27 0.26 0.03 0.09 0.35 Annual herb Humulus scandens 1.88 0.04 16.88 0.55 0.36 0.04 0.12 0.22 Annual herb Humulus scandens 0.62 0.01 3.87 0.13 0.18 0.02 0.09 0.16 Arbor Boehmeria nivea 0.75 0.01 4.82 0.16 0.28 0.03 0.19 0.36 Shrub Cyclosorus acuminatus 2.30 0.05 12.30 0.40 0.42 0.05 0.19 0.36 Others Cunninghamia lanceolata 0.60 0.01 4.97 0.16 0.19 0.02 0.11 0.21 Arbor Rhus chinensis 1.04 0.02 7.35 0.24 0.28 0.03 0.12 0.23 Arbor Amygdalus persica 0.63 0.01 8.26 0.19 0.16 0.01 0.07 0.16 Arbor Rumex japonicus 1.70 0.03 9.91 0.32 0.16 0.02 0.15 0.29 Perennial herb Bidens frondosa 0.50 0.01 3.38 0.11 0.23 0.03 0.11 0.21 Annual herb Paulownia kawakamii 0.33 0.01 3.90 0.04 0.06 0.00 0.05 0.06 Arbor 表 6 五種植物富集系數測定結果
Table 6. Enrichment coefficients of the five local dominant terrestrial plants
Plants V Cr As Cd Concentration/
(mg·kg?1)BCF Concentration/
(mg·kg?1)BCF Concentration/
(mg·kg?1)BCF Concentration/
(mg·kg?1)BCF Trifolium repens 59.48 0.12 561.36 1.87 398.11 6.63 3.60 0.72 Potentilla chinensis 868.81 1.74 2743.44 9.15 3772.08 62.87 33.28 6.66 Artemisia lavandulaefolia 45.07 0.09 346.62 1.15 28.25 0.47 2.95 0.59 Imperata cylindrica 429.35 0.86 1046.52 3.49 246.37 4.11 1.86 0.37 Boehmeria nivea 65.59 0.13 180.71 0.61 1170.06 19.50 3.96 0.79 259luxu-164 -
參考文獻
[1] Ashraf S, Ali Q, Zahir Z A, et al. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf, 2019, 174: 714 doi: 10.1016/j.ecoenv.2019.02.068 [2] Yang Z Y, Zhang J Z, Li C Y, et al. Research of soil heavy metal pollution and the remediation technology. J Green Sci Technol, 2018(22): 62楊志英, 張建珠, 李春苑, 等. 土壤重金屬污染及其修復技術研究現狀. 綠色科技, 2018(22):62 [3] Li X B, Dong H H, Ren L X, et al. Effects of chelating agent combination technologies on soil contaminated by heavy metals. Res Environ Sci, http://kns.cnki.net/kcms/detail/11.1827.X.20190423.1606.003.html李曉寶, 董煥煥, 任麗霞, 等. 螯合劑修復重金屬污染土壤聯合技術研究進展. 環境科學研究, http://kns.cnki.net/kcms/detail/11.1827.X.20190423.1606.003.html [4] Wang X, Guo B, Wang X. Research progress on remediation technology of heavy metal contaminated soil. Coal Chem Ind, 2019, 42(1): 156王星, 郭斌, 王欣. 重金屬污染土壤修復技術研究進展. 煤炭與化工, 2019, 42(1):156 [5] Fu G Y, Qiu Y Q, Song B Y, et al. Heavy metals enrichment characteristics of the dominant plants in lead-zinc slag yard along Dongjiang lake reservoir. J Cent South Univ Forest Technol, 2019, 39(4): 117付廣義, 邱亞群, 宋博宇, 等. 東江湖鉛鋅礦渣堆場優勢植物重金屬富集特征. 中南林業科技大學學報, 2019, 39(4):117 [6] Wang Z H, Liu X Y, Qin H Y. Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. J Geochem Explor, 2019, 200: 159 doi: 10.1016/j.gexplo.2019.02.005 [7] Zhu Y A, Huang D C, Liao X F, et al. A survey of plant resources in the contaminated soil of uranium mine. Jiangxi Sci, 2012, 30(5): 620 doi: 10.3969/j.issn.1001-3679.2012.05.018朱業安, 黃德超, 廖曉峰, 等. 鈾礦區污染土壤上植物資源調研. 江西科學, 2012, 30(5):620 doi: 10.3969/j.issn.1001-3679.2012.05.018 [8] Feng N. Enrichment of herbaceous plants on soil heavy metal. Environ Sci Manage, 2015, 40(7): 138 doi: 10.3969/j.issn.1673-1212.2015.07.037豐楠. 草本植物對土壤重金屬的富集研究. 環境科學與管理, 2015, 40(7):138 doi: 10.3969/j.issn.1673-1212.2015.07.037 [9] Kersten G, Majestic B, Quigley M. Phytoremediation of cadmium and lead-polluted watersheds. Ecotoxicol Environ Saf, 2017, 137: 225 doi: 10.1016/j.ecoenv.2016.12.001 [10] Pilipovic A, Zalesny Jr. R S, Roncevic S, et al. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. J Environ Manage, 2019, 239: 352 doi: 10.1016/j.jenvman.2019.03.072 [11] Zeng P, Guo Z H, Xiao X Y, et al. Effect of phytoremediation with Broussonetia papyrifera on the biological quality in soil contaminated with heavy metals. China Environ Sci, 2018, 38(7): 2639 doi: 10.3969/j.issn.1000-6923.2018.07.033曾鵬, 郭朝暉, 肖細元, 等. 構樹修復對重金屬污染土壤環境質量的影響. 中國環境科學, 2018, 38(7):2639 doi: 10.3969/j.issn.1000-6923.2018.07.033 [12] Liu W, Shu W S, Lan C Y. Viola baoshanensis?A new hyperaccumulator for cadmium. Chin Sci Bull, 2003, 48(19): 2046 doi: 10.3321/j.issn:0023-074X.2003.19.009劉威, 束文圣, 藍崇鈺. 寶山堇菜(Viola baoshanensis)??一種新的鎘超富集植物. 科學通報, 2003, 48(19):2046 doi: 10.3321/j.issn:0023-074X.2003.19.009 [13] Xie J Q, Lei M, Chen T B, et al. Phytoremediation of soil co-contaminated with arsenic, lead, zinc and copper using Pteris vittata L.: a field study. Acta Sci Circum, 2010, 30(1): 165謝景千, 雷梅, 陳同斌, 等. 蜈蚣草對污染土壤中As、Pb、Zn、Cu的原位去除效果. 環境科學學報, 2010, 30(1):165 [14] Chandrasekhar C, Ray J G. Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Ecotoxicol Environ Saf, 2019, 171: 26 doi: 10.1016/j.ecoenv.2018.12.058 [15] Mo F X. Study on the Feature of Heavy Metal Pollution and Phytoremediation in Three Gorges Reservoir[Dissertation]. Chongqing: Chongqing Jiaotong University, 2014莫福孝. 三峽庫區消落帶土壤重金屬污染特征及植物修復技術研究[學位論文]. 重慶: 重慶交通大學, 2014 [16] Gao F J, Ju T N, Wu X, et al. Spatial variability and autocorrelation analysis of pH in a mollisol tillage area of Northeast China. Soils, 2018, 50(3): 566高鳳杰, 鞠鐵男, 吳嘯, 等. 黑土耕作層土壤pH空間變異及自相關分析. 土壤, 2018, 50(3):566 [17] Zhu H, Bing H J, Wu Y H, et al. The spatial and vertical distribution of heavy metal contamination in sediments of the Three Gorges Reservoir determined by anti-seasonal flow regulation. Sci Total Environ, 2019, 664: 79 doi: 10.1016/j.scitotenv.2019.02.016 [18] An Z Z, Chen T B, Lei M, et al. Tolerance of Pteris vittata L. to Pb, Cu and Zn. Acta Ecol Sin, 2003, 23(12): 2594 doi: 10.3321/j.issn:1000-0933.2003.12.013安志裝, 陳同斌, 雷梅, 等. 蜈蚣草耐鉛、銅、鋅毒性和修復能力的研究. 生態學報, 2003, 23(12):2594 doi: 10.3321/j.issn:1000-0933.2003.12.013 -