Research on the interference elimination method of GPR signal for tunnel geological prediction
-
摘要: 受探測環境制約,隧道超前地質預報過程中探地雷達反射波往往具有“弱信號,強干擾”的特征,給數據處理和解譯帶來極大的困難。將剪切變換(shearlet變換,ST)引入探地雷達信號處理,根據有效信號和干擾信號在剪切域中不同尺度、不同方向上的能量差異,提出一種基于自適應閥值的隨機干擾去除方法,并通過正演模擬數據驗證了該方法在隨機干擾去除上的優勢;在此基礎上針對隧道超前地質預報中常見的能量接近、頻率異常干擾信號,以實際數據為例說明小波變換(WT)對其去除效果;從而進一步提出小波變換與剪切變換聯合干擾壓制方法,即首先使用小波變換對異常頻率干擾進行分離,然后采用基于自適應閥值的剪切變換對隨機干擾進行壓制。現場溶洞探測案例應用效果表明,本文所提出的方法能在去除干擾的同時很好地保留有效信號,根據處理后的波形堆積圖可以很好地凸顯地質異常區域,從而提高探地雷達資料解譯精度。Abstract: Ground-penetrating radar (GPR) has been used in a wide range of shallow detection applications, such as underground geological mapping, highway detection, and hydrogeology survey. In recent years, GPR has been most widely utilized in tunnel geological prediction because it has the advantages of high resolution, intuitionistic results, and fast scanning. In addition, GPR signal is a typical nonstationary and time-varying signal, with its electromagnetic wave exhibiting strong absorption attenuation and dispersion as it propagated in complex surrounding rock. At the same time, the GPR response is often characterized by a weak signal and a strong interference because of numerous system interferences in the tunnel detection environment, which lead to difficulties in data processing and interpretation. Therefore, interference elimination is always a difficult problem when GPR is applied to tunnel geological prediction. In this study, through the introduction of shearlet transform (ST) to GPR signal processing, an adaptive thresholding method is proposed to eliminate random interference on the basis of the energy difference between effective and interference signals in the shearlet domain at different scales and directions. The advantages of this method in random interference removal are verified by forward simulation data. On this basis, the interference signal, as well as its energy proximity and frequency anomaly, common in advanced tunnel geological prediction is taken as an example to illustrate the effect of wavelet transform (WT) on its removal. In this manner, WT and ST are combined to suppress interference. First, WT is used to separate abnormal frequency interference. Then, ST based on the adaptive thresholding method is used to suppress random interference. The results of practical engineering cases of karst cave detection in the field show that the method proposed in this study can remove the interference signal, retain the effective signal, and highlight the abnormal geological area on the basis of the processed waveform stacking diagram to improve the interpretation accuracy of GPR data.
-
表 1 小波變換與剪切變換處理前后信噪比、峰值信噪比、均方誤差對比表
Table 1. Comparison of SNR, PSNR and MSE before and after wavelet and shearlet transform processing
Model type SNR / dB PSNR MSE Noisy data WT ST Noisy data WT ST Noisy data WT ST Circular ?2.457 9.559 22.871 14.144 26.170 39.481 3.347 0.259 0.041 Square ?2.528 9.469 22.987 14.153 26.150 39.667 4.891 0.249 0.002 259luxu-164 -
參考文獻
[1] Xue Y G, Li S C, Su M X, et al. Study of geological prediction implementation method in tunnel construction. Rock Soil Mech, 2011, 32(8): 2416 doi: 10.3969/j.issn.1000-7598.2011.08.028薛翊國, 李術才, 蘇茂鑫, 等. 隧道施工期超前地質預報實施方法研究. 巖土力學, 2011, 32(8):2416 doi: 10.3969/j.issn.1000-7598.2011.08.028 [2] Gao Y T, Xu J, Wu S C, et al. An intelligent identification method to detect tunnel defects based on the multidimensional analysis of GPR reflections. Chin J Eng, 2018, 40(3): 293高永濤, 徐俊, 吳順川, 等. 基于GPR反射波信號多維分析的隧道病害智能辨識. 工程科學學報, 2018, 40(3):293 [3] Jol H M. Ground Penetrating Radar: Theory and Applications. Elsevier, 2009 [4] Yang G, Liu D W. Frequency spectrum characteristic of quartz sandstone rock mass with GPR. Chin J Eng, 2015, 37(11): 1397楊光, 劉敦文. 石英砂巖體的地質雷達波頻譜特征. 工程科學學報, 2015, 37(11):1397 [5] Liu G, Li S C, Xue Y G, et al. GPR signal processing approach under low signal to noise ratio based on wavelet transforms and its application. Geotech Invest Surv, 2009, 37(9): 85柳剛, 李術才, 薛翊國, 等. 基于小波變換的雷達低信噪比信號處理技術及應用研究. 工程勘察, 2009, 37(9):85 [6] Bao Q Z, Li Q C, Chen W C. GPR data noise attenuation on the curvelet transform. Appl Geophys, 2014, 11(3): 301 doi: 10.1007/s11770-014-0444-2 [7] Gan L, Zhou L, You X G, et al. The instantaneous frequency extraction of GPR B-scan data based on HHT method // 2012 International Conference on Machine Learning and Cybernetics (ICMLC). Xi’an, 2012: 982 [8] Ouadfeul S A, Aliouane L. Multiscale analysis of noisy 3D GPR data using the directional continuous wavelet transform // 2012 14th International Conference on Ground Penetrating Radar (GPR). Shanghai, 2012: 257 [9] Li C M, Wang L S, Xu M J, et al. Objects recognition of ground penetrating radar in karst regions using wavelet energy spectrum analysis. Chin J Geophys, 2006, 49(5): 1499 doi: 10.3321/j.issn:0001-5733.2006.05.030李才明, 王良書, 徐鳴潔, 等. 基于小波能譜分析的巖溶區探地雷達目標識別. 地球物理學報, 2006, 49(5):1499 doi: 10.3321/j.issn:0001-5733.2006.05.030 [10] Addison A D, Battista B M, Knapp C C. Improved hydrogeophysical parameter estimation from empirical mode decomposition processed ground penetrating radar data. J Environ Eng Geophys, 2009, 14(4): 171 doi: 10.2113/JEEG14.4.171 [11] Chen C S, Jeng Y. Nonlinear data processing method for the signal enhancement of GPR data. J Appl Geophys, 2011, 75(1): 113 doi: 10.1016/j.jappgeo.2011.06.017 [12] Zhang Z Y, Zhang X D, Yu H Y, et al. Noise suppression based on a fast discrete curvelet transform. J Geophys Eng, 2010, 7(1): 105 doi: 10.1088/1742-2132/7/1/009 [13] Zhu Z Q, Zhu H, Lu G Y, et al. Processing of GPR data in tunnel fissure water based on Curvelet transform. Comput Tech Geophys Geochem Explor, 2014, 36(5): 571 doi: 10.3969/j.issn.1001-1749.2014.05.10朱自強, 朱賀, 魯光銀, 等. 基于Curvelet變換的隧道裂隙水GPR數據處理研究. 物探化探計算技術, 2014, 36(5):571 doi: 10.3969/j.issn.1001-1749.2014.05.10 [14] Zhou L, Li S C, Xu Z H, et al. Interpretation and treatment of interfering factors in advance geological prediction by ground penetrating radar of tunnel construction. Tunnel Constr, 2016, 36(12): 1517 doi: 10.3973/j.issn.1672-741X.2016.12.017周輪, 李術才, 許振浩, 等. 隧道施工期超前預報地質雷達異常干擾識別及處理. 隧道建設, 2016, 36(12):1517 doi: 10.3973/j.issn.1672-741X.2016.12.017 [15] Liu C M, Wang D L, Wang T, et al. Random seismic noise attention based on the Shearlet transform. Acta Petrol Sin, 2014, 35(4): 692 doi: 10.7623/syxb201404009劉成明, 王德利, 王通, 等. 基于Shearlet變換的地震隨機噪聲壓制. 石油學報, 2014, 35(4):692 doi: 10.7623/syxb201404009 [16] Liu C M, Wang D L, Hu B, et al. Seismic date interpolation based on sparse in Shearlet domain. J Jilin Univ Earth Sci Ed, 2016, 46(6): 1855劉成明, 王德利, 胡斌, 等. Shearlet域稀疏約束地震數據重建. 吉林大學學報: 地球科學版, 2016, 46(6):1855 [17] Guo K, Labate D. The construction of smooth Parseval frames of shearlets. Math Modell Nat Phenom, 2013, 8(1): 82 doi: 10.1051/mmnp/20138106 [18] Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform. Appl Comput Harmon Anal, 2008, 25(1): 25 doi: 10.1016/j.acha.2007.09.003 [19] Zhang X W, Gao Y Z, Fang G Y, et al. Application of generalized S transform with low-pass filtering to layer recognition of Ground Penetrating Radar. Chin J Geophys, 2013, 56(1): 309 doi: 10.6038/cjg20130132張先武, 高云澤, 方廣有. 帶有低通濾波的廣義S變換在探地雷達層位識別中的應用. 地球物理學報, 2013, 56(1):309 doi: 10.6038/cjg20130132 -