<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

隧道地質預報探地雷達信號干擾消除方法

劉宗輝 吳一帆 劉保東 劉毛毛 藍日彥 孫懷鳳

劉宗輝, 吳一帆, 劉保東, 劉毛毛, 藍日彥, 孫懷鳳. 隧道地質預報探地雷達信號干擾消除方法[J]. 工程科學學報, 2020, 42(3): 390-398. doi: 10.13374/j.issn2095-9389.2019.04.12.001
引用本文: 劉宗輝, 吳一帆, 劉保東, 劉毛毛, 藍日彥, 孫懷鳳. 隧道地質預報探地雷達信號干擾消除方法[J]. 工程科學學報, 2020, 42(3): 390-398. doi: 10.13374/j.issn2095-9389.2019.04.12.001
LIU Zong-hui, WU Yi-fan, LIU Bao-dong, LIU Mao-mao, LAN Ri-yan, SUN Huai-feng. Research on the interference elimination method of GPR signal for tunnel geological prediction[J]. Chinese Journal of Engineering, 2020, 42(3): 390-398. doi: 10.13374/j.issn2095-9389.2019.04.12.001
Citation: LIU Zong-hui, WU Yi-fan, LIU Bao-dong, LIU Mao-mao, LAN Ri-yan, SUN Huai-feng. Research on the interference elimination method of GPR signal for tunnel geological prediction[J]. Chinese Journal of Engineering, 2020, 42(3): 390-398. doi: 10.13374/j.issn2095-9389.2019.04.12.001

隧道地質預報探地雷達信號干擾消除方法

doi: 10.13374/j.issn2095-9389.2019.04.12.001
基金項目: 國家自然科學基金資助項目(51708136);廣西自然科學基金資助項目(2017GXNSFBA198199);中國博士后基金面上項目(2019M653310);廣西科技基地和人才專項資助項目(桂科AD19245153,桂科AD17129047)
詳細信息
    通訊作者:

    E-mail:47573043@qq.com

  • 中圖分類號: TU375.4

Research on the interference elimination method of GPR signal for tunnel geological prediction

More Information
  • 摘要: 受探測環境制約,隧道超前地質預報過程中探地雷達反射波往往具有“弱信號,強干擾”的特征,給數據處理和解譯帶來極大的困難。將剪切變換(shearlet變換,ST)引入探地雷達信號處理,根據有效信號和干擾信號在剪切域中不同尺度、不同方向上的能量差異,提出一種基于自適應閥值的隨機干擾去除方法,并通過正演模擬數據驗證了該方法在隨機干擾去除上的優勢;在此基礎上針對隧道超前地質預報中常見的能量接近、頻率異常干擾信號,以實際數據為例說明小波變換(WT)對其去除效果;從而進一步提出小波變換與剪切變換聯合干擾壓制方法,即首先使用小波變換對異常頻率干擾進行分離,然后采用基于自適應閥值的剪切變換對隨機干擾進行壓制。現場溶洞探測案例應用效果表明,本文所提出的方法能在去除干擾的同時很好地保留有效信號,根據處理后的波形堆積圖可以很好地凸顯地質異常區域,從而提高探地雷達資料解譯精度。

     

  • 圖  1  正演幾何模型. (a)圓形空洞;(b)方形空洞

    Figure  1.  Geometric model of forward simulation: (a) circular hole; (b) square hole

    圖  2  正演模擬結果. (a)圓形空洞;(b)方形空洞

    Figure  2.  Forward simulation results: (a) circular hole; (b) square hole

    圖  3  加噪后數據. (a)圓形空洞;(b)方形空洞

    Figure  3.  Data with random interference: (a) circular hole; (b) square hole

    圖  4  小波變換處理結果. (a)圓形空洞;(b)方形空洞

    Figure  4.  Results after Wavelet transform processing: (a) circular hole; (b) square hole

    圖  5  剪切變換處理結果. (a)圓形空洞;(b)方形空洞

    Figure  5.  Results after shearlet transform processing: (a) circular hole; (b) square hole

    圖  6  第200道單道波數據去噪前后對比. (a)原始數據;(b)小波變換;(c)剪切變換

    Figure  6.  Comparison before and after denoizing of the 200th A-scan: (a) raw data; (b) wavelet transform; (c) shearlet transform

    圖  7  頻率異常信號干擾消除前后灰度圖. (a)常規方法;(b)剪切變換;(c)小波變換

    Figure  7.  Image of before and after elimination of abnormal frequency signal interference: (a) conventional method; (b) shearlet transform; (c) wavelet transform

    圖  8  頻率異常干擾消除前后單道波廣義S變換時頻分布. (a)常規方法;(b)剪切變換;(c)小波變換

    Figure  8.  Generalized S transform (GST) spectrogram of GPR A-scan before and after eliminating the interference: (a) conventional method; (b) shearlet; (c) wavelet

    圖  9  聯合法去除干擾流程圖

    Figure  9.  Flow chart of the combined methods for interference removal

    圖  10  現場情況

    Figure  10.  Field conditions

    圖  11  測線與溶洞平面示意圖

    Figure  11.  Layout diagram of karst caves and survey line

    圖  12  去噪效果對比. (a)常規方法;(b)小波變換;(c)聯合算法

    Figure  12.  Comparison of different denoizing methods: (a) conventional method; (b) wavelet transform; (c) joint algorithm

    圖  13  廣義S變換時頻分布結果對比. (a)常規方法;(b)小波變換;(c)聯合算法

    Figure  13.  Comparison of GST results obtained using different denoizing methods: (a) conventional method; (b) wavelet transform; (c) joint algorithm

    表  1  小波變換與剪切變換處理前后信噪比、峰值信噪比、均方誤差對比表

    Table  1.   Comparison of SNR, PSNR and MSE before and after wavelet and shearlet transform processing

    Model typeSNR / dBPSNRMSE
    Noisy dataWTSTNoisy dataWTSTNoisy dataWTST
    Circular?2.4579.55922.87114.14426.17039.4813.3470.2590.041
    Square?2.5289.46922.98714.15326.15039.6674.8910.2490.002
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xue Y G, Li S C, Su M X, et al. Study of geological prediction implementation method in tunnel construction. Rock Soil Mech, 2011, 32(8): 2416 doi: 10.3969/j.issn.1000-7598.2011.08.028

    薛翊國, 李術才, 蘇茂鑫, 等. 隧道施工期超前地質預報實施方法研究. 巖土力學, 2011, 32(8):2416 doi: 10.3969/j.issn.1000-7598.2011.08.028
    [2] Gao Y T, Xu J, Wu S C, et al. An intelligent identification method to detect tunnel defects based on the multidimensional analysis of GPR reflections. Chin J Eng, 2018, 40(3): 293

    高永濤, 徐俊, 吳順川, 等. 基于GPR反射波信號多維分析的隧道病害智能辨識. 工程科學學報, 2018, 40(3):293
    [3] Jol H M. Ground Penetrating Radar: Theory and Applications. Elsevier, 2009
    [4] Yang G, Liu D W. Frequency spectrum characteristic of quartz sandstone rock mass with GPR. Chin J Eng, 2015, 37(11): 1397

    楊光, 劉敦文. 石英砂巖體的地質雷達波頻譜特征. 工程科學學報, 2015, 37(11):1397
    [5] Liu G, Li S C, Xue Y G, et al. GPR signal processing approach under low signal to noise ratio based on wavelet transforms and its application. Geotech Invest Surv, 2009, 37(9): 85

    柳剛, 李術才, 薛翊國, 等. 基于小波變換的雷達低信噪比信號處理技術及應用研究. 工程勘察, 2009, 37(9):85
    [6] Bao Q Z, Li Q C, Chen W C. GPR data noise attenuation on the curvelet transform. Appl Geophys, 2014, 11(3): 301 doi: 10.1007/s11770-014-0444-2
    [7] Gan L, Zhou L, You X G, et al. The instantaneous frequency extraction of GPR B-scan data based on HHT method // 2012 International Conference on Machine Learning and Cybernetics (ICMLC). Xi’an, 2012: 982
    [8] Ouadfeul S A, Aliouane L. Multiscale analysis of noisy 3D GPR data using the directional continuous wavelet transform // 2012 14th International Conference on Ground Penetrating Radar (GPR). Shanghai, 2012: 257
    [9] Li C M, Wang L S, Xu M J, et al. Objects recognition of ground penetrating radar in karst regions using wavelet energy spectrum analysis. Chin J Geophys, 2006, 49(5): 1499 doi: 10.3321/j.issn:0001-5733.2006.05.030

    李才明, 王良書, 徐鳴潔, 等. 基于小波能譜分析的巖溶區探地雷達目標識別. 地球物理學報, 2006, 49(5):1499 doi: 10.3321/j.issn:0001-5733.2006.05.030
    [10] Addison A D, Battista B M, Knapp C C. Improved hydrogeophysical parameter estimation from empirical mode decomposition processed ground penetrating radar data. J Environ Eng Geophys, 2009, 14(4): 171 doi: 10.2113/JEEG14.4.171
    [11] Chen C S, Jeng Y. Nonlinear data processing method for the signal enhancement of GPR data. J Appl Geophys, 2011, 75(1): 113 doi: 10.1016/j.jappgeo.2011.06.017
    [12] Zhang Z Y, Zhang X D, Yu H Y, et al. Noise suppression based on a fast discrete curvelet transform. J Geophys Eng, 2010, 7(1): 105 doi: 10.1088/1742-2132/7/1/009
    [13] Zhu Z Q, Zhu H, Lu G Y, et al. Processing of GPR data in tunnel fissure water based on Curvelet transform. Comput Tech Geophys Geochem Explor, 2014, 36(5): 571 doi: 10.3969/j.issn.1001-1749.2014.05.10

    朱自強, 朱賀, 魯光銀, 等. 基于Curvelet變換的隧道裂隙水GPR數據處理研究. 物探化探計算技術, 2014, 36(5):571 doi: 10.3969/j.issn.1001-1749.2014.05.10
    [14] Zhou L, Li S C, Xu Z H, et al. Interpretation and treatment of interfering factors in advance geological prediction by ground penetrating radar of tunnel construction. Tunnel Constr, 2016, 36(12): 1517 doi: 10.3973/j.issn.1672-741X.2016.12.017

    周輪, 李術才, 許振浩, 等. 隧道施工期超前預報地質雷達異常干擾識別及處理. 隧道建設, 2016, 36(12):1517 doi: 10.3973/j.issn.1672-741X.2016.12.017
    [15] Liu C M, Wang D L, Wang T, et al. Random seismic noise attention based on the Shearlet transform. Acta Petrol Sin, 2014, 35(4): 692 doi: 10.7623/syxb201404009

    劉成明, 王德利, 王通, 等. 基于Shearlet變換的地震隨機噪聲壓制. 石油學報, 2014, 35(4):692 doi: 10.7623/syxb201404009
    [16] Liu C M, Wang D L, Hu B, et al. Seismic date interpolation based on sparse in Shearlet domain. J Jilin Univ Earth Sci Ed, 2016, 46(6): 1855

    劉成明, 王德利, 胡斌, 等. Shearlet域稀疏約束地震數據重建. 吉林大學學報: 地球科學版, 2016, 46(6):1855
    [17] Guo K, Labate D. The construction of smooth Parseval frames of shearlets. Math Modell Nat Phenom, 2013, 8(1): 82 doi: 10.1051/mmnp/20138106
    [18] Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform. Appl Comput Harmon Anal, 2008, 25(1): 25 doi: 10.1016/j.acha.2007.09.003
    [19] Zhang X W, Gao Y Z, Fang G Y, et al. Application of generalized S transform with low-pass filtering to layer recognition of Ground Penetrating Radar. Chin J Geophys, 2013, 56(1): 309 doi: 10.6038/cjg20130132

    張先武, 高云澤, 方廣有. 帶有低通濾波的廣義S變換在探地雷達層位識別中的應用. 地球物理學報, 2013, 56(1):309 doi: 10.6038/cjg20130132
  • 加載中
圖(13) / 表(1)
計量
  • 文章訪問數:  1874
  • HTML全文瀏覽量:  1553
  • PDF下載量:  79
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-04-12
  • 刊出日期:  2020-03-01

目錄

    /

    返回文章
    返回