<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

含錳鋼RH真空過程錳的遷移行為

宋磊 王敏 李新 高振波 李小虎 包燕平

宋磊, 王敏, 李新, 高振波, 李小虎, 包燕平. 含錳鋼RH真空過程錳的遷移行為[J]. 工程科學學報, 2020, 42(3): 331-339. doi: 10.13374/j.issn2095-9389.2019.04.08.006
引用本文: 宋磊, 王敏, 李新, 高振波, 李小虎, 包燕平. 含錳鋼RH真空過程錳的遷移行為[J]. 工程科學學報, 2020, 42(3): 331-339. doi: 10.13374/j.issn2095-9389.2019.04.08.006
SONG Lei, WANG Min, LI Xin, GAO Zhen-bo, LI Xiao-hu, BAO Yan-ping. Manganese migration behavior in the RH vacuum process of manganese-containing steel[J]. Chinese Journal of Engineering, 2020, 42(3): 331-339. doi: 10.13374/j.issn2095-9389.2019.04.08.006
Citation: SONG Lei, WANG Min, LI Xin, GAO Zhen-bo, LI Xiao-hu, BAO Yan-ping. Manganese migration behavior in the RH vacuum process of manganese-containing steel[J]. Chinese Journal of Engineering, 2020, 42(3): 331-339. doi: 10.13374/j.issn2095-9389.2019.04.08.006

含錳鋼RH真空過程錳的遷移行為

doi: 10.13374/j.issn2095-9389.2019.04.08.006
基金項目: 國家自然科學基金資助項目(51874021)
詳細信息
    通訊作者:

    E-mail:worldmind@163.com

  • 中圖分類號: TF769.4

Manganese migration behavior in the RH vacuum process of manganese-containing steel

More Information
  • 摘要: Ruhrstahl Heraeus(RH)精煉爐是重要的二次精煉裝備,但在真空處理過程中會遇到鋼液易揮發合金元素的損失量大的問題,且造成鋼液真空噴濺的結瘤及對后續鋼液的二次氧化。針對含錳鋼RH真空處理過程錳的氣化導致的元素損失及真空噴濺等問題,跟蹤和研究了120 t RH不同真空處理模式下鋼液中Mn元素的變化規律及遷移行為。分析了錳元素損失與其揮發和真空噴濺的關系,并在RH真空室內壁不同位置結瘤物的解剖實驗中得到驗證。研究表明,鋼液中Mn元素在RH真空過程中存在著明顯損失,真空前期損失量最大;RH真空室內壁結瘤物中錳氧化物的質量分數整體占比高達14%~70%;熱力學計算結果顯示:溫度、鋼中Mn的含量以及真空度對Mn的揮發行為均有著很大的影響,是真空過程錳遷移的關鍵影響因素。通過改進真空壓降模式,采用步進式抽真空,元素錳的損失由原先的2×10?4降低至1×10?4,結果對現場生產具有很強的指導意義,通過改進真空壓降模式可以有效的抑制鋼液的噴濺和揮發,進而減少合金元素錳的損失。

     

  • 圖  1  真空壓降模式對比實驗

    Figure  1.  Vacuum pressure drop mode comparison experiment

    圖  2  RH過程中鋼中[Mn]質量分數變化規律

    Figure  2.  Change law of [Mn] content in steel during the RH process

    圖  3  RH過程中密集取樣Mn含量的變化

    Figure  3.  Variation of Mn content in intensive sampling during RH

    圖  4  RH真空處理過程中煙氣量變化. (a, b, c)預抽真空過程煙氣量的變化;(d)真空處理階段煙氣的情況

    Figure  4.  Flue change during the RH vacuum process: (a, b, c) the changes of flue gas volume during pre-evacuation; (d) the condition of the flue gas in the vacuum processing stage

    圖  5  不同進站[Mn]含量RH過程中質量分數損失量

    Figure  5.  Attenuation of Mn content in different RH stations during RH

    圖  6  對比實驗RH過程中[Mn]質量分數含量變化

    Figure  6.  Comparison of [Mn] contents in the experimental RH process

    圖  7  RH真空槽體結瘤物宏觀示意圖(a),RH內部結瘤物掃描電鏡照片及相應的面掃描結果(b, c, d)、(e, f, g)、(h, i, j)

    Figure  7.  Macroscopic diagram of the RH vacuum tank nodule (a), RH internal nodule SEM and mapping results (b, c, d), (e, f, g), (h, i, j)

    圖  8  結瘤物X射線衍射結果

    Figure  8.  Results of nodule X-ray diffraction patterns

    圖  9  結瘤物取樣位置示意圖

    Figure  9.  Schematic diagram of the nodulation sampling position

    圖  10  不同溫度和成分下,鋼液中錳合金元素平衡蒸氣壓變化圖(a),在1873 K下,錳的揮發量與真空度的變化關系圖(b),在1873 K下,錳合金元素蒸氣壓與摩爾分數變化關系圖(c),在X[Mn] = 0.0078時,錳合金元素蒸氣壓與溫度變化關系圖(d)

    Figure  10.  Variation (a) of the equilibrium vapor pressure of Mn alloy in molten steel for different temperatures and compositions, relationship (b) between the amount of Mn volatilization and the degree of vacuum at 1873 K, relationship (c) between vapor pressure and molar fraction of manganese alloy elements at 1873 K, relationship (d) between vapor pressure of manganese alloy element and temperature change at X[Mn]=0.0078

    圖  11  RH內部Mn的遷移機理圖. (a)鋼-渣擴散過程;(b)RH內部揮發傳質過程;(c)RH真空室內壁中部激冷凝固;(d)RH頂部由于物理抬升附著內壁

    Figure  11.  Schematic diagram of the migration mechanism of Mn in RH: (a) Steel slag diffusion process; (b) RH internal volatilization and mass transfer process; (c) RH vacuum chamber condensed and solidified in the middle of the wall; (d) RH top attached to the inner wall due to physical lifting

    表  1  實驗鋼種A化學成分(質量分數)

    Table  1.   Chemical compositions of the target steel grades A %

    CSiMnPSAls
    0.48~0.510.26~0.300.60~0.90<0.020<0.0150.020~0.030
    下載: 導出CSV

    表  2  實驗鋼廠120 t RH主要技術參數

    Table  2.   Main technical parameters of 120 t RH in the experimental steel plant

    ParameterValueParameterValue
    Height inside the vacuum chamber/mm9910Length of dipping tube/mm975
    Inside diameter of vacuum chamber/mm1744The flow of increase gas(Standard state)/(L·min?1)Max.120
    Inside diameter of dipping tube/mm500Centerline distance of dipping tube/mm1244
    Number of argon supply nozzles10Ultimate vacuum/Pa≤28
    Suction capacity of vacuum pump/(kg·h?1)500~2800
    下載: 導出CSV

    表  3  取樣方案

    Table  3.   Sampling plan

    Plan numberThe outbound
    of LF
    The arrival
    of RH
    Time after vacuum ≤100 PaThe broken
    of RH
    Time after soft blowingThe outbound
    of RH
    0 min5 min10 min15 min5 min10 min15 min
    Option oneSample 1Sample 2Sample 3
    Option twoSample 1Sample 2Sample 3Sample 4Sample 5Sample 6Sample 7Sample 8Sample 9Sample 10Sample 11
    下載: 導出CSV

    表  4  RH結瘤物中各部位質量分數占比

    Table  4.   Composition of each part in the nodule of RH

    IngredientMass fractions at different sampling locations/%
    Outlet of hot bendEntrance to the hot bendTop of upper tankMiddle of upper tankLower of upper tankUpper part of lower tank
    Fe2O353.72713.67838.98567.17976.19278.994
    MnO35.78370.40150.39724.66514.26614.190
    MgO3.6767.4634.0502.9054.1352.331
    SiO23.5321.2072.5762.0932.0932.042
    SO30.6630.8590.9280.7520.7520.873
    CaO1.4181.2910.9280.9280.767
    Cr2O30.4520.4160.8511.2141.2140.614
    Al2O30.7710.425
    下載: 導出CSV

    表  5  不同溫度時各種金屬元素的平衡蒸氣壓

    Table  5.   Equilibrium vapor pressure of various metal elements at different temperatures

    Temperature/KEquilibrium vapor pressure of Si/PaEquilibrium vapor pressure of Fe/PaEquilibrium vapor pressure of Mn/Pa
    16730.04033893
    17330.100.811604
    17930.261.862760
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Li Y H, Bao Y P, Wang M, et al. Influence of process conditions during Ruhrstahl-Hereaeus refining process and effect of vacuum degassing on carbon removal to ultra-low levels. Ironmaking Steelmaking, 2015, 42(5): 366 doi: 10.1179/1743281214Y.0000000236
    [2] Zhao L H, Guo J L, Xu J L, et al. Complex bubble formation in the vacuum chamber and the up leg of the Rheinsahl-Heraeus. Chin J Eng, 2018, 40(4): 453

    趙立華, 郭建龍, 徐佳亮, 等. RH真空室內氣泡行為的研究. 工程科學學報, 2018, 40(4):453
    [3] Li Y J, Gao H C, Wu Y G, et al. Optimization of secondary refining process for ultra-low carbon steel. Steelmaking, 2010, 26(5): 11

    李應江, 高海潮, 吳耀光, 等. 超低碳鋼爐外精煉工藝的優化. 煉鋼, 2010, 26(5):11
    [4] Yoshioka T, Nakahata K, Kawamura T, et al. Factors to determine inclusion compositions in molten steel during the secondary refining process of case-hardening steel. ISIJ Int, 2016, 56(11): 1973 doi: 10.2355/isijinternational.ISIJINT-2016-324
    [5] Wang M, Bao Y P, Zhao L H, et al. Difference analysis in steel cleanness between two RH treatment modes for SPHC grade. ISIJ Int, 2015, 55(8): 1652 doi: 10.2355/isijinternational.ISIJINT-2015-027
    [6] Lei H, Yang S X, Huang D H. The control of decarburization process spitting is optimize // Proceedings of the 15th Steelmaking Academic Conference. Xiamen, 2008: 276

    雷輝, 楊森祥, 黃登華. RH脫碳過程噴濺控制的工藝優化// 第十五屆全國煉鋼學術會議文集. 廈門, 2008:276
    [7] Wu Q M. The control of splashing in decarburization process of RH furnace. Vacuum, 2012, 49(5): 21 doi: 10.3969/j.issn.1002-0322.2012.05.006

    吳全明. RH真空爐脫碳過程噴濺的控制. 真空, 2012, 49(5):21 doi: 10.3969/j.issn.1002-0322.2012.05.006
    [8] Zhan W L, Wu K, Fu P, et al. Establishment and application of the Rist operating line for the COREX melter gasifier. J Univ Sci Technol Beijing, 2013, 35(4): 448

    湛文龍, 吳鏗, 付平, 等. COREX熔融氣化爐Rist操作線的建立和應用. 北京科技大學學報, 2013, 35(4):448
    [9] Yu Y G, Chen B P, Wang Y G, et al. Evaporation dynamics of trace elements during vacuum induction melting of steel. J Univ Sci Technol Beijing, 1993, 15(6): 549

    于月光, 陳伯平, 王玉剛, 等. 鋼真空感應熔煉過程痕量元素揮發的動力學. 北京科技大學學報, 1993, 15(6):549
    [10] Zhang Y L, Fu Z H, Li S Q, et al. Comparative analysis on the vaporization behavior of zinc and lead in molten slag system. J Univ Sci Technol Beijing, 2007, 29(Suppl 2): 73

    張延玲, 付中華, 李士琦, 等. 熔渣中Zn、Pb揮發行為的對比分析. 北京科技大學學報, 2007, 29(增刊2): 73
    [11] Yu Y G, Chen B P, Wang Y G, et al. Evaporation of trace bismuth during vacuum melting of steel. J Univ Sci Technol Beijing, 1994, 16(6): 522

    于月光, 陳伯平, 王玉剛, 等. 真空感應熔煉過程中微量Bi的揮發. 北京科技大學學報, 1994, 16(6):522
    [12] Kong L Z, Deng Z Y, Zhu M Y. Vaporization behaviors of manganese in medium and high Mn steel grades during vacuum treatment. Special Steel, 2018, 39(4): 17 doi: 10.3969/j.issn.1003-8620.2018.04.005

    孔令種, 鄧志銀, 朱苗勇. 中高錳鋼在真空精煉過程中的氣化行為. 特殊鋼, 2018, 39(4):17 doi: 10.3969/j.issn.1003-8620.2018.04.005
    [13] Zhao Y P, Zhang J Z. Study on the evaporation of molten ferromanganese at high temperature. Ferro-alloys, 2002, 33(4): 18 doi: 10.3969/j.issn.1001-1943.2002.04.006

    趙躍萍, 張金柱. 熔融錳鐵高溫揮發的實驗研究. 鐵合金, 2002, 33(4):18 doi: 10.3969/j.issn.1001-1943.2002.04.006
    [14] Geng D Q, Lei H, He J C. Effect of traveling magnetic field on flow, mixing, decarburization and inclusion removal during RH refining process. ISIJ Int, 2012, 52(6): 1036 doi: 10.2355/isijinternational.52.1036
    [15] Wu J, Ren T. The technique of circumfluence control for molten steel in RH. Heavy Machinery, 2005(3): 4 doi: 10.3969/j.issn.1001-196X.2005.03.002

    吳杰, 任彤. RH鋼水環流控制技術. 重型機械, 2005(3):4 doi: 10.3969/j.issn.1001-196X.2005.03.002
    [16] Wang S J, Dong Y C. Thermodynamic properties of phosphorus and manganese in ferromanganese melts. J Iron Steel Res, 1996, 8(2): 1

    王世俊, 董元箎. 錳鐵熔體中磷和錳的熱力學性質. 鋼鐵研究學報, 1996, 8(2):1
    [17] Ryan H F, Suiter J. Further comments on stacking faults in tungsten. J Less Common Met, 1966, 10(5): 371
  • 加載中
圖(11) / 表(5)
計量
  • 文章訪問數:  1523
  • HTML全文瀏覽量:  1119
  • PDF下載量:  72
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-04-08
  • 刊出日期:  2020-03-01

目錄

    /

    返回文章
    返回