Beneficiation of low-grade manganese ore by hydrochloric acid leaching and high-value regeneration of acid medium
-
摘要: 針對印度尼西亞某低品位錳礦,提出鹽酸法富集與酸介質高值再生的工藝。借助X射線衍射分析,光學顯微鏡和電子顯微鏡等表征方法進行工藝礦物學分析。結果表明:該錳礦礦物組成簡單,主要由方解石、軟錳礦和少量菱錳礦、褐鐵礦、高嶺石等組成。篩析結果顯示該錳礦粒度越小,錳含量相對越高。粗碎后以2 mm篩孔的篩子過篩可得到錳質量分數為33.32%的錳中礦。錳中礦鹽酸直接浸出的最佳條件為:浸出pH 3.0、浸出時間1.5 h、攪拌轉速200 r·min?1、液固比4∶1 mL·g?1,此條件下產出的錳精礦品位為54.50%,鈣質量分數為0.57%。常溫下鹽酸再生可產出二水硫酸鈣晶須,其長徑比可達50以上。再生鹽酸返回浸出錳中礦,產出的錳精礦品位為52.16%,鈣質量分數為1.39%,驗證了該工藝流程的可行性。X射線衍射分析、掃描電鏡及能譜分析結果顯示產出的錳精礦主要組成成分為軟錳礦,雜質為少量褐鐵礦、高嶺石等。酸介質循環時雜質將逐漸積累,當鎂離子質量濃度積累到96.74 g·L?1時,采用水解沉淀法進行除雜。Abstract: Nowadays, the high-grade manganese ore resources available in the world are run out gradually, while the demand for manganese is increasing; therefore, it is of great significance to research how to exploit and utilize abundant low-grade manganese ore resources economically and effectively. Aiming at the low-grade manganese ore in Indonesia, the process of beneficiating manganese ore by hydrochloric acid leaching and high-value regeneration of acid medium was proposed in this paper. Process mineralogy analyses were performed using X-ray diffraction, optical microscopy, and electron microscopy. The results show that the mineral composition mainly contains calcite and pyrolusite, followed by a small amount of pyrolusite, limonite, and kaolinite. The results of sieve analyses demonstrate that the manganese content in the manganese ore increases with the decrease of particle size. After coarse crushing, manganese middlings with manganese content of 33.32% (mass fraction) can be obtained by screening at 2 mm. The optimum conditions for leaching manganese middlings directly by hydrochloric acid are as follows: leaching pH is 3.0, leaching time is 1.5 h, rotating speed of agitator is 200 r·min?1, and liquid-solid ratio is 4∶1 mL·g?1. The grade of manganese concentrates obtained under the optimum conditions is 54.50% (mass fraction), and the calcium content is 0.57% (mass fraction). Dihydrate gypsum whiskers can be produced by the regeneration of hydrochloric acid at a common temperature, and the length-diameter ratio can be over 50. The regenerated hydrochloric acid is returned to leach manganese middlings. The grade of manganese concentrate and calcium content are 52.16% and 1.39% (mass fraction), which verifies the feasibility of this technological process. The X-ray diffraction (XRD) and scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) results show that the main component of the manganese concentrate is pyrolusite, and the impurities are a small amount of limonite and kaolinite. Impurities will accumulate gradually as acid medium circulates, and they can be removed by hydrolysis precipitation method when Mg2+ concentration accumulates to 96.74 g·L?1.
-
表 1 錳礦化學成分分析(質量分數)
Table 1. Chemical composition of manganese ore
% Mn Ca Fe Mg Al Ba C Si P S 20.00 25.91 1.44 0.18 0.11 0.085 7.95 0.34 0.15 0.001 表 2 錳中礦化學成分分析(質量分數)
Table 2. Chemical analyses results of the manganese middlings
% Mn Ca Si C P S 33.32 16.23 0.61 4.88 0.25 0.008 表 3 最優條件產出的錳精礦化學分析(質量分數)
Table 3. Chemical analyses results of the synthesized manganese ore concentrate under optimal conditions
% Mn Fe Ca Al Mg Ba Ni Cu Sr Si C 54.50 3.90 0.57 0.35 0.27 0.23 0.068 0.057 0.05 0.85 0.02 表 4 硫酸加入量與錳精礦品位的關系
Table 4. Relationship between the amount of added sulfuric acid and the grade of the manganese concentrate
Amount sulfuric acid /% Grade of manganese concentrate /% 70 52.85 80 52.16 90 48.16 95 46.18 100 45.52 259luxu-164 -
參考文獻
[1] Lei X L, Hu Y D, Du Y L, et al. Thinking of status and development of the manganese ore resource utilization. China Min Mag, 2015, 24(Suppl 1): 19雷曉力, 胡永達, 杜軼倫, 等. 錳礦資源現狀及開發利用思考. 中國礦業, 2015, 24(增刊1): 19 [2] Luo N. Selective Flotation between Rhodochrosite and Calcite [Dissertation]. Changsha: Central South University, 2012羅娜. 菱錳礦與方解石浮選分離研究[學位論文]. 長沙: 中南大學, 2012 [3] Tan Z Z, Mei G G, Li W J, et al. Manganese Metallurgy. Changsha: Central South University Press, 2007譚柱中, 梅光貴, 李維健, 等. 錳冶金學. 長沙: 中南大學出版社, 2007 [4] Li G L. Status quo of manganese ore in China. China Manganese Ind, 2018, 36(3): 5黎貴亮. 中國錳礦山現狀. 中國錳業, 2018, 36(3):5 [5] Huang K, Zhang Y H, Li G L, et al. Research situation of manganese resources and chemical processing of manganese ore. Hydrometall China, 2013, 32(4): 207黃琨, 張亞輝, 黎貴亮, 等. 錳礦資源及化學選礦研究現狀. 濕法冶金, 2013, 32(4):207 [6] Wang S, Dai T, Zhong H. A research progress on manganese resource in utilization technologies. China Manganese Ind, 2018, 36(2): 1王帥, 戴婷, 鐘宏. 錳資源利用技術研究進展. 中國錳業, 2018, 36(2):1 [7] Xie D D, Tong X, Zhang H H, et al. Research development and beneficiation technology of ferro-Mn ore. China Manganese Ind, 2016, 34(2): 4謝丹丹, 童雄, 張洪花, 等. 鐵錳礦的選礦工藝及其研究進展. 中國錳業, 2016, 34(2):4 [8] Liu H, He J, Liu J X, et al. Discussion on two beneficiation processes of a soft manganese ore. Mod Min, 2015(10): 80 doi: 10.3969/j.issn.1674-6082.2015.10.025劉華, 何劍, 劉建祥, 等. 某軟錳礦石兩種選礦工藝流程探討. 現代礦業, 2015(10):80 doi: 10.3969/j.issn.1674-6082.2015.10.025 [9] Muriana R A. Responses of Ka’oje metallurgical manganese ore to gravity concentration techniques. Int J Sci Eng Technol, 2015, 4(7): 392 [10] Chen Z, Liu X M, Cao J, et al. Beneficiation experiment on a low grade manganese oxide ore. Mod Min, 2015(2): 51 doi: 10.3969/j.issn.1674-6082.2015.02.016陳錚, 劉夏明, 曹健, 等. 某低品位氧化錳礦選礦試驗. 現代礦業, 2015(2):51 doi: 10.3969/j.issn.1674-6082.2015.02.016 [11] Tripathy S K, Banerjee P K, Suresh N. Effect of desliming on the magnetic separation of low-grade ferruginous manganese ore. Int J Miner Metall Mater, 2015, 22(7): 661 doi: 10.1007/s12613-015-1120-0 [12] Zhou F, Chen T, Yan C J, et al. The flotation of low-grade manganese ore using a novel linoleate hydroxamic acid. Colloids Surf A, 2015, 466: 1 doi: 10.1016/j.colsurfa.2014.10.055 [13] He Z C, Peng A G, Zheng X F, et al. A study on the two-ores method of leaching low grade pyrolusite. China Manganese Ind, 2004, 22(2): 38 doi: 10.3969/j.issn.1002-4336.2004.02.011賀周初, 彭愛國, 鄭賢福, 等. 兩礦法浸出低品位軟錳礦的工藝研究. 中國錳業, 2004, 22(2):38 doi: 10.3969/j.issn.1002-4336.2004.02.011 [14] Peng R H, Li X X. Preparation of high -purity manganese dioxide by leaching manganese ore with ferrous sulfate from by-product of titanium white. Inorg Chem Ind, 2006, 38(12): 48 doi: 10.3969/j.issn.1006-4990.2006.12.017彭榮華, 李曉湘. 用鈦白副產的硫酸亞鐵浸錳制備高純二氧化錳. 無機鹽工業, 2006, 38(12):48 doi: 10.3969/j.issn.1006-4990.2006.12.017 [15] Mehta K D, Das C, Pandey B D. Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger. Hydrometallurgy, 2010, 105(1-2): 89 doi: 10.1016/j.hydromet.2010.08.002 [16] Ma B Z, Xing P, Wang C Y, et al. A novel way to synthesize calcium sulfate whiskers with high aspect ratios from concentrated calcium nitrate solution. Mater Lett, 2018, 219: 1 doi: 10.1016/j.matlet.2018.02.025 [17] Sun H J, Tan D Y, Peng T J, et al. Preparation of calcium sulfate whisker by atmospheric acidification method from flue gas desulfurization gypsum. Procedia Environ Sci, 2016, 31: 621 doi: 10.1016/j.proenv.2016.02.112 [18] Liu C, Zhao Q, Wang Y, et al. Hydrothermal synthesis of calcium sulfate whisker from flue gas desulfurization gypsum. Chin J Chem Eng, 2016, 24(11): 1552 doi: 10.1016/j.cjche.2016.04.024 [19] Xia Y Y. Handbook of Chemical Laboratory. 3rd Ed. Beijing: Chemical Industry Press, 2015夏玉宇. 化學實驗室手冊. 3版. 北京: 化學工業出版社, 2015 -