<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于密度聚類和動態時間彎曲的結晶器黏結漏鋼預報方法的開發

段海洋 王旭東 姚曼

段海洋, 王旭東, 姚曼. 基于密度聚類和動態時間彎曲的結晶器黏結漏鋼預報方法的開發[J]. 工程科學學報, 2020, 42(3): 348-357. doi: 10.13374/j.issn2095-9389.2019.04.02.004
引用本文: 段海洋, 王旭東, 姚曼. 基于密度聚類和動態時間彎曲的結晶器黏結漏鋼預報方法的開發[J]. 工程科學學報, 2020, 42(3): 348-357. doi: 10.13374/j.issn2095-9389.2019.04.02.004
DUAN Hai-yang, WANG Xu-dong, YAO Man. Development of prediction method for mold sticking breakout based on density-based spatial clustering of applications with noise and dynamic time warping[J]. Chinese Journal of Engineering, 2020, 42(3): 348-357. doi: 10.13374/j.issn2095-9389.2019.04.02.004
Citation: DUAN Hai-yang, WANG Xu-dong, YAO Man. Development of prediction method for mold sticking breakout based on density-based spatial clustering of applications with noise and dynamic time warping[J]. Chinese Journal of Engineering, 2020, 42(3): 348-357. doi: 10.13374/j.issn2095-9389.2019.04.02.004

基于密度聚類和動態時間彎曲的結晶器黏結漏鋼預報方法的開發

doi: 10.13374/j.issn2095-9389.2019.04.02.004
基金項目: 國家自然科學基金資助項目(51974056,51474047);中央高校基本科研業務費資助項目
詳細信息
    通訊作者:

    E-mail:hler@dlut.edu.cn

  • 中圖分類號: TG249.7

Development of prediction method for mold sticking breakout based on density-based spatial clustering of applications with noise and dynamic time warping

More Information
  • 摘要: 針對漏鋼時結晶器銅板溫度呈現出的“時間滯后”和“空間倒置”等典型特征,本文通過引入動態時間彎曲(DTW)和機器學習中的密度聚類(DBSCAN)方法,提取、匯集并區分結晶器溫度的典型變化模式,在此基礎上開發出一種新型的漏鋼預報方法。借助動態時間彎曲度量不同拉速、鋼種或工藝操作條件下結晶器熱電偶溫度的相似性,并運用密度聚類方法聚集和分離正常工況、黏結漏鋼狀況下的溫度樣本,在此基礎上檢測和預報結晶器漏鋼。結果證實,相較于傳統的邏輯判斷和人工神經元網絡預報結晶器漏鋼的方法,基于聚類的漏鋼預報方法無需人為設置閾值或參數,能夠依據漏鋼歷史樣本中溫度變化的共性規律,提取并融合熱電偶溫度在時間、空間上典型的變化特征,準確區分和預報結晶器漏鋼,具有較好的自適應性和魯棒性。

     

  • 圖  1  示意圖. (a)結晶器熱電偶分布;(b)黏結漏鋼熱電偶溫度變化

    Figure  1.  Schematic diagram: (a) thermocouple distribution of mold; (b) thermocouple temperature variation of breakout

    圖  2  不同工況下的溫度變化. (a)正常;(b)漏鋼;(c)誤報

    Figure  2.  Temperature comparison of different situations: (a) normal; (b) breakout; (c) false alarm

    圖  3  溫度及其特征提取. (a)正常工況溫度;(b)正常工況溫度預處理結果

    Figure  3.  Temperature and features extraction: (a) temperature of normal status; (b) processing results of normal status

    圖  4  溫度及其特征提取. (a)誤報溫度;(b)誤報溫度預處理結果

    Figure  4.  Temperature and features extraction: (a) temperature of false alarm; (b) processing results of false alarm

    圖  5  溫度及其特征提取. (a)漏鋼溫度;(b)漏鋼溫度預處理結果

    Figure  5.  Temperature and features extraction: (a) temperature of breakout; (b) processing results of breakout

    圖  6  歐氏距離和動態時間彎曲映射對比

    Figure  6.  Mapping comparison of Euclidean and DTW

    圖  7  參數鄰域半徑選擇示意圖

    Figure  7.  Diagram of parameter Eps selection

    圖  8  訓練樣本密度聚類可視化結果

    Figure  8.  Training samples visual result after DBSCAN clustering

    圖  9  漏鋼預報流程

    Figure  9.  Flowchart of breakout prediction

    圖  10  不同工況下測試樣本的熱電偶溫度. (a)正常;(b)誤報

    Figure  10.  Thermocouple temperature of test samples under different working mode: (a) normal; (b) false alarm mode

    圖  11  黏結漏鋼測試樣本熱電偶溫度. (a)漏鋼樣本實例1;(b)漏鋼樣本實例2

    Figure  11.  Thermocouple temperature of test samples at breakout mode: (a) sample 1; (b) sample 2

    圖  12  測試樣本密度聚類可視化結果

    Figure  12.  Testing samples visual result after DBSCAN clustering

    表  1  歐氏距離和動態時間彎曲距離計算結果對比

    Table  1.   Comparison of calculation results for Euclidean and DTW distance

    ItemSequencexyz
    Euclideanx011.4615.12
    y11.46010.53
    z15.1210.530
    Dynamic Time Warpingx02.429.39
    y2.4209.07
    z9.399.070
    下載: 導出CSV

    表  2  訓練樣本密度聚類結果

    Table  2.   DBSCAN clustering result of training samples

    Working conditionDBSCAN clustering result (label)
    Normal?1?1?1?1?1?1?1?1?1?1
    ?1?1?1?1?1?1?1?1?1?1
    False alarm?1?1?1?1?1?1?1?1?1?1
    ?1?1?1?1?1?1?1?1?1?1
    ?1?1?1?1?1?1?1?1?1?1
    Breakout0000000000
    0000000000
    0000000000
    下載: 導出CSV

    表  3  測試樣本密度聚類結果

    Table  3.   DBSCAN clustering result of samples testing

    Working conditionDBSCAN clustering result (label)
    Normal?1?1?1?1?1?1?1?1?1?1
    ?1?1?1?1?1?1?1?1?1?1
    ?1?1?1?1?1?1?1?1?1?1
    False alarm?1?1?1?1?1?1?1?1?1?1
    ?1?1?1?1?1?1?1?1?1?1
    breakout0000000000
    0000000000
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhang Y X, Wang W L, Zhang H H. Development of a mold cracking simulator: The study of breakout and crack formation in continuous casting mold. Metall Mater Trans B, 2016, 47(4): 2244 doi: 10.1007/s11663-016-0705-y
    [2] Qin X, Zhu C F, Zheng L W, et al. Molten steel breakout prediction based on thermal friction measurement. J Iron Steel Res Int, 2011, 18(4): 24 doi: 10.1016/S1006-706X(11)60045-9
    [3] Liu X X, Liu P Z, Zhou J Q. Numerical simulation and prediction for sticking type breakout behavior in slab continuous casting. J Univ Sci Technol Beijing, 1997, 19(2): 143

    劉曉霞, 劉佩忠, 周筠清. 板坯連鑄粘結型漏鋼過程模擬及預報. 北京科技大學學報, 1997, 19(2):143
    [4] Hao P F, Xu X H, Pei Y Y, et al. The period on collecting breakout data sampling and the fashion of mold thermal-monitoring in continuous casting breakout. J Northeast Univ Nat Sci Ed, 1997, 18(4): 400

    郝培鋒, 徐心和, 裴云毅, 等. 連鑄漏鋼預報系統數據采樣與熱電偶埋設方式. 東北大學學報: 自然科學版, 1997, 18(4):400
    [5] He F, Zhang L Y. Mold breakout prediction in slab continuous casting based on combined method of GA-BP neural network and logic rules. Int J Adv Manuf Technol, 2018, 95(9-12): 4081 doi: 10.1007/s00170-017-1517-1
    [6] Liu Y, Wang X D, Du F M, et al. Computer vision detection of mold breakout in slab continuous casting using an optimized neural network. Int J Adv Manuf Technol, 2017, 88(1-4): 557 doi: 10.1007/s00170-016-8792-0
    [7] Blazek K E, Saucedo I G. Characterization of the formation, propagation, and recovery of sticker/hanger type breakouts. ISIJ Int, 1990, 30(6): 435 doi: 10.2355/isijinternational.30.435
    [8] Lu M J, Lin K J, Kuo C H, et al. Sticker breakout theory and its prediction in slab continuous-casting // Proceedings of 67th Steelmaking Conference. Dallas, 1993: 343
    [9] Liu Y Z, Wang X D, Jia Q Z, et al. Investigation in the behavior of sticking breakout and its propagation in slab continuous casting mould. Steelmaking, 2009, 25(3): 45

    劉永貞, 王旭東, 賈啟忠, 等. 結晶器內粘結漏鋼及其傳播行為的研究. 煉鋼, 2009, 25(3):45
    [10] He F, Wu P F, Xu Q Y, et al. Mould temperature change and propagation behavior of sticking-type breakout during continuous casting. J Iron Steel Res, 2016, 28(2): 27

    何飛, 吳鵬飛, 徐其言, 等. 連鑄粘結漏鋼的結晶器溫度變化及其傳播行為. 鋼鐵研究學報, 2016, 28(2):27
    [11] Liu Y, Wang X D, Shi G Q, et al. Process factors of sticking breakout for wide and thick slab continuous casting. J Univ Sci Technol Beijing, 2014, 36(6): 757

    劉宇, 王旭東, 施桂錢, 等. 寬厚板連鑄黏結漏鋼的工藝因素. 北京科技大學學報, 2014, 36(6):757
    [12] Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise // KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining. Portland, 1996: 226
    [13] Salvadora S, Chan P. Toward accurate dynamic time warping in linear time and space. Intell Data Anal, 2007, 11(5): 561 doi: 10.3233/IDA-2007-11508
    [14] Kate R J. Using dynamic time warping distances as features for improved time series classification. Data Min Knowl Discov, 2016, 30(2): 283 doi: 10.1007/s10618-015-0418-x
    [15] Anh D T, Thanh L H. An efficient implementation of k-means clustering for time series data with DTW distance. Int J Bus Intell Data Min, 2015, 10(3): 213 doi: 10.1504/IJBIDM.2015.071311
    [16] Keogh E, Ratanamahatana C A. Exact indexing of dynamic time warping. Knowl Inf Syst, 2005, 7(3): 358 doi: 10.1007/s10115-004-0154-9
    [17] Wan Y, Chen X L, Shi Y. Adaptive cost dynamic time warping distance in time series analysis for classification. J Comput Appl Math, 2017, 319: 514 doi: 10.1016/j.cam.2017.01.004
    [18] Wang W T, Wu Y L, Tang C Y, et al. Adaptive density-based spatial clustering of applications with noise (DBSCAN) according to data // Proceedings of 2015 International Conference on Machine Learning and Cybernetics (ICMLC). Guangzhou, 2015: 445
  • 加載中
圖(12) / 表(3)
計量
  • 文章訪問數:  1684
  • HTML全文瀏覽量:  978
  • PDF下載量:  48
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-04-02
  • 刊出日期:  2020-03-01

目錄

    /

    返回文章
    返回