<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于免疫遺傳形態學的視網膜光學相干斷層圖像邊緣

童何俊 付冬梅

童何俊, 付冬梅. 基于免疫遺傳形態學的視網膜光學相干斷層圖像邊緣[J]. 工程科學學報, 2019, 41(4): 539-545. doi: 10.13374/j.issn2095-9389.2019.04.015
引用本文: 童何俊, 付冬梅. 基于免疫遺傳形態學的視網膜光學相干斷層圖像邊緣[J]. 工程科學學報, 2019, 41(4): 539-545. doi: 10.13374/j.issn2095-9389.2019.04.015
TONG He-jun, FU Dong-mei. Edge detection method of retinal optical coherence tomography images based onimmune genetic morphology[J]. Chinese Journal of Engineering, 2019, 41(4): 539-545. doi: 10.13374/j.issn2095-9389.2019.04.015
Citation: TONG He-jun, FU Dong-mei. Edge detection method of retinal optical coherence tomography images based on immune genetic morphology[J]. Chinese Journal of Engineering, 2019, 41(4): 539-545. doi: 10.13374/j.issn2095-9389.2019.04.015

基于免疫遺傳形態學的視網膜光學相干斷層圖像邊緣

doi: 10.13374/j.issn2095-9389.2019.04.015
詳細信息
    通訊作者:

    付冬梅, E-mail: fdm_ustb@ustb.edu.cn

  • 中圖分類號: TP391.41

Edge detection method of retinal optical coherence tomography images based on immune genetic morphology

More Information
  • 摘要: 提出了基于免疫遺傳算法的形態學自適應結構元素生成算法,并將其用于光學相干斷層成像(optical coherence tomography,OCT) 圖像中視網膜組織邊緣檢測. 首先將圖像進行去噪和粗分割的預處理,并將圖像劃分為若干子圖像; 其次對每一子圖利用免疫遺傳算法求取自適應結構元,初始隨機生成固定長度的二進制數串作為抗體,并將其轉化為結構元素格式,以圖像二維熵定義抗體適應度,根據子圖像本身結構特征信息,尋找最優抗體結構元素; 最后利用尋優得到的各結構元素對子圖進行形態學邊緣檢測,合并各子圖的分割結果,實現整體圖像目標邊界提取. 實驗結果表明了該方法在圖像目標邊界提取的有效性.

     

  • 圖  1  免疫遺傳算法程序框圖

    Figure  1.  Flowchart of immune genetic algorithm

    圖  2  鏈式抗體與結構元素之間的轉化關系

    Figure  2.  Transformation between chain antibodies and structural elements

    圖  3  視網膜邊界提取過程. (a) 原圖; (b) 去噪預處理; (c) 視網膜區域粗分割; (d) 圖像分塊; (e) 自適應結構元與邊緣檢測; (f) 最終分割結果

    Figure  3.  Extraction process of retinal boundary: (a) original image; (b) de-noising preprocessing; (c) rough segmentation of retinal region; (d) image segmentation into blocks; (e) adaptive structure element and edge detection; (f) final segmentation result

    圖  4  多種邊界提取方法結果比較. (a) 原圖; (b) 去噪預處理; (c) 專家手動分割結果; (d) 尺度M = 3結構元; (e) 尺度M = 5結構元; (f) 多尺度結構元; (g) Canny; (h) GTDP; (i) IGM; (j) IGSM

    Figure  4.  Comparison of multiple boundary extraction methods: (a) original image; (b) de-noising preprocessing; (c) expert manual segmentation results; (d) structure element scale M = 3; (e) structure element scale M = 5; (f) multiscale structural element; (g) Canny; (h) GTDP; (i) IGM; (j) IGSM

    圖  5  黃斑中心凹區域劃分示意圖

    Figure  5.  Schematic map of the division of the macular fovea

    表  1  多種邊界提取方法品質因數評價結果

    Table  1.   Partt quality factor evaluation results by multiple boundary extraction methods

    邊界提取方法 品質因數,R/%
    Single_3 88. 31
    Single_5 75. 79
    Multi 84. 71
    Canny 43. 05
    GTDP 84. 7
    IGM_3 89. 85
    IGM_5 85. 9
    IGSM_3 90. 23
    IGSM_5 87. 23
    下載: 導出CSV

    表  2  視網膜組織量化結果

    Table  2.   Quantitative results of retinal tissue

    邊界提取方法 區域 A/S1 A/S2 A/S3 A/S4 A/S5 T/S1 T/S2 T/S3 T/S4 T/S5
    專家手動分割 NSL_R 1524 928 90 1051 1680 26.74 14.28 2.31 16.17 29.47
    NSL_G 932 1309 878 1256 893 16.35 20.14 22.51 19.32 15.67
    RPE 600 730 468 768 614 10.53 11.23 12 11.82 10.77
    Single_3 NSL_R 1502 923 106 1055 1652 26.35 14.20 2.72 16.23 28.98
    NSL_G 948 1320 861 1254 912 16.63 20.31 22.08 19.29 16.00
    RPE 454 714 468 759 606 7.96 10.98 12.00 11.68 10.63
    Single_5 NSL_R 1377 777 43 1012 1529 24.16 11.95 1.10 15.57 26.82
    NSL_G 1069 1452 922 1823 1029 18.75 22.31 23.64 19.74 18.05
    RPE 459 579 388 637 485 8.05 8.91 9.95 9.80 8.51
    Multi NSL_R 1506 930 117 1056 1652 26.42 14.31 3.00 16.25 28.98
    NSL_G 944 1302 852 1252 910 16.56 20.03 21.85 19.26 15.96
    RPE 587 724 468 761 607 10.30 11.14 12.00 11.71 10.65
    Canny NSL_R 1522 950 162 1085 1669 26.7 14.62 4.15 16.69 29.28
    NSL_G 913 1275 787 1218 884 16.02 19.62 20.18 18.74 15.51
    RPE 609 729 492 768 617 10.68 11.22 12.62 11.82 10.82
    GTDP NSL_R 1151 1098 814 1240 1659 26.51 16.89 20.87 19.08 29.11
    NSL_G 930 1131 156 1063 896 16.32 17.40 4.00 16.35 15.72
    RPE 595 725 468 761 619 10.44 11.15 12.00 11.71 10.86
    IGM NSL_R 1501 921 105 1059 1652 26.33 14.17 2.69 16.29 28.98
    NSL_G 948 1323 862 1251 911 16.63 20.35 22.10 19.25 15.98
    RPE 582 713 468 759 606 10.21 10.97 12.00 11.68 10.63
    IGSM NSL_R 1501 923 107 1059 1651 26.33 14.20 2.74 16.29 28.96
    NSL_G 949 1322 860 1251 913 16.65 20.34 22.05 19.25 16.02
    RPE 584 713 468 759 606 10.25 10.97 12.00 11.68 10.63
    下載: 導出CSV

    表  3  多種邊界提取方法與專家結果量化平均相對誤差比較(以面積為例)

    Table  3.   Comparison of the average relative errors determined by multiple boundary extraction methods and expert results (as an example of area)

    邊界提取方法 Single_3 Single_5 Multi Canny GTDP IGM IGSM
    ARE 0.0383 0.1586 0.0303 0.0751 0.6385 0.0241 0.0256
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Haralick R M, Sternberg S R, Zhuang X H. Image analysis using mathematical morphology. IEEE Trans Pattern Anal Mach Intell, 1987, 9(4): 532 http://europepmc.org/abstract/MED/21869411
    [2] Liu Y L, Gui Z G. Adaptive image enhancement algorithm with variable weighted matching based on morphology. J Electron Inform Technol, 2014, 36(6): 1285 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201406003.htm

    劉艷莉, 桂志國. 基于形態學的可變權值匹配自適應圖像增強算法. 電子與信息學報, 2014, 36(6): 1285 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201406003.htm
    [3] Zhou S B, Shen A Q, Li G F. Concrete image segmentation based on multiscale mathematic morphology operators and Otsu method. Adv Mater Sci Eng, 2015, 2015(11): 208473
    [4] Lee S H, Lee C. Multiscale morphology based illumination normalization with enhanced local textures for face recognition. Expert Syst Appl, 2016, 62: 347 doi: 10.1016/j.eswa.2016.06.039
    [5] Wang J G, Gao D Y.Improved morphological TOP-HAT filter optimized with genetic algorithm//Proceedings of the 2009 2nd International Congress on Image and Signal Processing (CISP).Tianjin, 2009: 1
    [6] Babu K R, Sunitha K V N. Image de-noising and enhancement for salt and pepper noise using genetic algorithm-morphological operations. Int J Signal Image Process, 2013, 4(1): 36 http://www.researchgate.net/publication/236166772_Image_De-noising_and_Enhancement_for_Salt_and_Pepper_Noise_using_Genetic_Algorithm-Morphological_Operations
    [7] Erc?al T, ?zcan E, Asta S.Soft morphological filter optimization using a genetic algorithm for noise elimination//Proceedings of 2014 14th UK Workshop on Computational Intelligence.Bradford, 2014: 1
    [8] Jiang D H, Hua G. Research on image enhancement method based on adaptive immune genetic algorithm. J Comput Theor Nanosci, 2015, 12(1): 119 doi: 10.1166/jctn.2015.3707
    [9] Chen L A, Zhang P M. Realization of immune genetic algorithm in MATLAB. J Fuzhou Univ Nat Sci, 2004, 32(5): 554 doi: 10.3969/j.issn.1000-2243.2004.05.010

    陳麗安, 張培銘. 免疫遺傳算法在MATLAB環境中的實現. 福州大學學報(自然科學版), 2004, 32(5): 554 doi: 10.3969/j.issn.1000-2243.2004.05.010
    [10] Liu Y N, Zhang G C, An J. Noise-resistance in color image edge detection based on flexible morphology. J Lanzhou Univ Nat Sci, 2016, 52(1): 135 https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201601023.htm

    劉燕妮, 張貴倉, 安靜. 基于柔性形態學的抗噪彩色圖像邊緣檢測. 蘭州大學學報(自然科學版), 2016, 52 (1): 135 https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201601023.htm
    [11] Bhima K, Jagan A.Analysis of MRI based brain tumor identification using segmentation technique//Proceedings of 2016 International Conference on Communication and Signal Processing.Melmaruvathur, 2016: 2109
    [12] Michikawa T, Suzuki H, Moriguchi M, et al. Automatic extraction of endocranial surfaces from CT images of crania. PloS One, 2017, 12(4): e0168516 http://europepmc.org/abstract/MED/28406901
    [13] Xu D L, Tan R Q, Ding Q, et al. Screening ocular fundus macular diseases with OCT. Clin J Chin Med, 2016, 8(32): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYLY201632064.htm

    徐黛麗, 譚榮強, 丁瓊, 等. 眼底黃斑部疾病篩查中OCT的應用. 中醫臨床研究, 2016, 8(32): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYLY201632064.htm
    [14] Li Y J, Zhang J W, Wang M N. Improved BM3D denoising method. IET Image Process, 2017, 11(12): 1197 doi: 10.1049/iet-ipr.2016.1110
    [15] Chiu S J, Allingham M J, Mettu P S, et al. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed Opt Exp, 2015, 6(4): 1172 doi: 10.1364/BOE.6.001172
    [16] Fu D M, Tong H J, Zheng S, et al. Retinal status analysis method based on feature extraction and quantitative grading in OCT images. Biomed Eng Online, 2016, 15(1): 87 doi: 10.1186/s12938-016-0206-x
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數:  904
  • HTML全文瀏覽量:  405
  • PDF下載量:  13
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-03-01
  • 刊出日期:  2019-04-15

目錄

    /

    返回文章
    返回